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Chapter 1

Introduction

This is a user manual for FORCESPRO, a commercial tool for generating highly customized
optimization solvers that can be deployed on all embedded computers. FORCESPRO is in-
tended to be used in situations were the same optimization problem has to be solved many
times, possibly in real-time, with varying data, i.e. there is su�cient time in the design stage
for generating a customized solution for the problem you want to solve.

Figure 1.1: Overview of FORCESPRO.

The code generation engine in FORCESPRO extracts the structure in your optimization prob-
lem and automatically synthesizes a custom optimization solver. The resulting C code can only
solve one optimization problem (with certain data changing), hence it is typically many times
more e�cient and smaller code size than general-purpose optimization solvers. The gener-
ated C code is also library-free and uses no dynamic memory allocation making it suitable for
safe deployment on real-time autonomous systems.
This document will show you how to input your optimization problem description for code
generation in FORCESPRO. It is important to point out that FORCESPRO is not a tool for trans-
forming a problem specification into an optimization problem description. This responsibility
lies with the user.

1.1 Troubleshooting and support

FORCESPRO typically returns meaningful error messages when code generation errors occur
due to invalid user inputs. When encountering other errors please consult our documen-
tation which is included in the FORCESPRO client and is also available on all FORCESPRO
servers. In case you cannot find a solution to your problem please submit a bug report to
support@embotech.com.

1
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Much e�ort has gone into making this interface easy to use. We welcome all your suggestions
for further improving the usability of the tool. Requests for special functionality for your partic-
ular problem will also be considered by our development team. For all requests and feedback
please contact support@embotech.com.

1.2 Licensing

1.2.1 Commercial licensing

FORCESPRO licenses are available through a subscription model. There are four types of li-
censes, as seen below:

• Engineer License: For generating FORCESPRO solvers. Charged per engineer computer.
• Software Testing License (Sil/CI): For running FORCESPRO solvers on a desktop PC or a

server for simulation and (automated) testing. No physical system is controlled. Charged
per platform running the solver.

• Floating License: For running FORCESPRO solvers on servers or virtualised environments
(such as Docker containers) without permanently mapping the license to a hardware
system. Charged per number of platforms able to concurrently run the solver. Currently
available only on Linux x86/x86_64.

• Hardware Testing License (HiL/Field Testing): For controlling a physical system (i.e. the
target platform may also be an ECU or a rapid prototyping platform). Charged per plat-
form running the solver.

For more information regarding licensing please check on our website or contact
sales@embotech.com.
FORCESPRO licenses are available in variants S, M and L. For more information please check
the section License Variants

1.2.2 Academic licensing

Users at degree granting institutions can have access to the Engineer License version of
FORCESPRO free of charge provided they are not doing research for an industrial partner.
Software Testing and Hardware Testing licenses are also available at highly reduced rates.

1.3 Citing FORCESPRO

If you use FORCESPRO in published scientific work, please cite the following two papers:

@misc{FORCESPro,
Author = "Alexander Domahidi and Juan Jerez",
Howpublished = "Embotech AG, url=https://embotech.com/FORCES-Pro",
Title = "FORCES Professional",
Year = "2014--2019"

}

@article{FORCESNLP,
Author = "A. Zanelli and A. Domahidi and J. Jerez and M. Morari",
Title = "FORCES NLP: an efficient implementation of interior-point...

methods for multistage nonlinear nonconvex programs",
Journal = "International Journal of Control",
Year = "2017",

(continues on next page)
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(continued from previous page)
Pages = "1-17"
}

1.4 Release Notes

1.4.1 New features in FORCESPRO 4.0.0

• Support for FORCES PRO NLP solvers (PDIP_NLP and SQP_NLP) in The MathWorks Model
Predictive Control Toolbox (TM)

• Solver timeout option for PDIP_NLP, SQP_NLP and PDIP
• New option exportBFGS which enables export of BFGS diagonal on every stage

1.4.2 Improvements in FORCESPRO 4.0.0

• Server now returns interface/definitions.py file independent of whether the request was
sent from the MATLAB or Python client

• Added support for symbolic step size in Python integrators
• Added connection tester for the forces server
• Added new parameter type Adense to allow copy of dense A matrix to sparse internally.

Should be used within Model Predictive Control Toolbox plugin only !!
• New option nlp.parametricBFGSinit for initializing BFGS matrix as a run-time parameter

1.4.3 Bug Fixes in FORCESPRO 4.0.0

• Fixed export of root relaxation solution in MINLP solver
• Fixed number of outputs in ADMM method
• Added fix for floattype ‘int’ and ‘short’
• Fixed issue occuring in Python client when all initial or all final variables are fixed
• Fixed reading issue in csmatio library

1.4.4 New features in FORCESPRO 3.1.0

• High-level Python interface for NLP solvers

1.4.5 Improvements in FORCESPRO 3.1.0

• Vectorized outer product on one-stage dense QP problems in double precision on Intel
platforms

• Refactoring of clients and server to enable standalone release
• Check for vectorization instructions in Python client, refactored C code in dll
• Made variables in generated interface static
• Improved e�ciency of CasADi file postprocessing in Matlab client

Chapter 1. Introduction 3
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• Export of dual variables in PDIP_NLP
• Fixed updateClient scripts to delete old data
• Made FORCES_NLP return dumped formulation even if an error occurs during execution
• Allow to specify directory when saving dumped problem formulation/instance

1.4.6 Bug Fixes in FORCESPRO 3.1.0

• Fix in detection of selection matrix
• Fix in CasADi for linux systems
• Fixed bug with stacked parametric bounds
• Updated accessing of Stage properties to work with obfuscation
• fix issue with variable number of equality constraints in convex problems
• Fixed issue in CasADi code generation
• Fixed internal rounding heuristic in MINLP solver

1.4.7 Improvements in FORCESPRO 3.0.1

• New nlp.stack_parambounds for stacking parametric bounds over stages with
PDIP_NLP and SQP_NLP

• Support for MicroAutoBox III

1.4.8 Bug Fixes in FORCESPRO 3.0.1

• Bug fix in fraction to boundary rule
• Bug fixes for specific compilation settings
• Fixed download of casadi for macos
• Fixed bug in model files declarations in casadi2forces with SQP_NLP

1.4.9 New features in FORCESPRO 3.0.0

• Real-time sequential quadratic programming solver via code option SQP_NLP

• Support for MathWorks Symbolic Math Toolbox and CasADI 3.5.1 (with limitations)
• Code option nlp.compact_code for generating small-size code on long horizon prob-

lems
• Support for license files
• Option for dumping problem formulation and data for support

1.4.10 Improvements in FORCESPRO 3.0.0

• Revamped licensing system
• Removed object files from dowloaded solver package

4 Chapter 1. Introduction
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1.4.11 Bug Fixes in FORCESPRO 3.0.0

• Fixed bug with number of stages and integer guess in MINLP solver

1.4.12 New features in FORCESPRO 2.0.0

• Introduced support for FORCESPRO QP solvers in the MATLAB MPC Toolbox from Math-
Works

• Created new examples for the MPC Toolbox plugin

1.4.13 Improvements in FORCESPRO 2.0.0

• Made tolerances on equalities, inequalities, stationarity and complementarity run-time
parameters in NLP solver

• Automatic disabling of vectorization when some matrix parameters are sparse

1.4.14 Bug Fixes in FORCESPRO 2.0.0

• Fixed linking issue with avx on linux host
• Fixed mex interface to not copy empty parameters
• Fixed bug with MINLP solver exitflag on infeasible problems

1.4.15 New features in FORCESPRO 1.9.1

• Adapted FORCESPRO license check to portal database
• Adapted floating license database checks to portal database
• Made linear algebra vectorization stage dependent

1.4.16 Improvements in FORCESPRO 1.9.1

• Fixed numerical bug in NLP line-search

1.4.17 New features in FORCESPRO 1.9.0

• New code-generation options for AVX and NEON vectorization
• New code generation options and parameters to provide an integer guess to the MINLP

solver
• New runtime parameter parallelStrategy for MINLP solver
• Created dedicated Floating License web Server

Chapter 1. Introduction 5
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1.4.18 Improvements in FORCESPRO 1.9.0

• Changed floating license communication to http
• Enabled user-defined outputs in MINLP solver
• Added codeoption c90 to add extra C definitions in casadi model files
• Added openmp flag to nvidia webcompiler
• Added support for python3.6
• Updated usysid files in client

1.4.19 Bug Fixes in FORCESPRO 1.9.0

• Fixed bug with constraints handling in code-generation
• Fixed memory bug in MINLP solver
• Fixed bug in parameters indexing in client. Parameters are now indexed with a fixed

number of digits depending on the horizon length. 1 digit below 10, 2 digits between 10
and 100 excluded,. . .

• Fixed bug with stacked parameter ineq.p.b

1.4.20 New features in FORCESPRO 1.8.0

• Mixed-integer nonlinear solver with parallelizable search and other customization fea-
tures

• Support for the Speedgoat platform
• Support for the Integrity ARM platform
• Support for Docker containers
• Updated newParam API to allow for parameters stacked over stages

1.4.21 Improvements in FORCESPRO 1.8.0

• Improved performance of compactSparse feature
• Added custom headers to specify platforms

1.4.22 Bug Fixes in FORCESPRO 1.8.0

• Fixed numerical bug in v1.7.0

1.4.23 New features in FORCESPRO 1.7.0

• MISRA 2012 compliance, no mandatory or required violations in generated C code
• Added support for dSPACE MicroAutoBox II
• Added support for ARM Cortex A72 platforms
• Added support for MinGW as a mex compiler

6 Chapter 1. Introduction



FORCESPRO User Manual

• New codeoption compactSparse for smaller code and faster compilation of sparse prob-
lems

• Adding threadSafeStorage option, enabling creation of thread-safe solvers (requires C11
compilers)

1.4.24 Improvements in FORCESPRO 1.7.0

• Improved CodeGen speed for sparse problems
• Improved web compilation to reduce http timeouts
• Secure client-server communication under custom embotech domain
• Improved portability of functions used
• Added display of license and solver expiration as well as generation id on header files
• Updated FORCEScleanup to include all solver related files
• Improved messages and warnings returned from FORCESPRO client
• Now passing iteration number to function evaluations
• Added new error code for invalid parameter initial values

1.4.25 Bug Fixes in FORCESPRO 1.7.0

• Changed default server when default server file is missing
• Always check for default server files when choosing server to use
• Corrected the logic for updating the best solution found so far (NLP)
• Fixed sparse linear algebra routine names

1.5 Version history of manual

The version history of this document is presented in Version history of FORCESPRO manual.

Table 1.1: Version history of FORCESPRO manual
Version Revision Date Reason for change
1 0 04/10/2017 Initial version
2 0 09/27/2018 Overhaul of outdated manual
2 1 11/19/2018 Add dSPACE code deployment
3 0 02/20/2019 Updated manual for v1.7.0
4 0 06/04/2019 Updated manual for v1.8.0
4 1 08/29/2019 Updated manual for v1.9.0
5 0 10/10/2019 Updated manual for v1.9.1
6 0 12/09/2019 Updated manual for v2.0.0
7 0 04/07/2020 Updated manual for v3.0.0
7 1 05/26/2020 Updated manual for v3.0.1
7 2 07/13/2020 Updated manual for v3.1.0
8 0 09/21/2020 Updated manual for v4.0.0
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Chapter 2

License Variants

Each problem type requires a dedicated solver method in order to be solved quickly and
e�ciently. FORCESPRO is available in di�erent variants in order to adapt to each user’s needs.
When receiving a FORCESPRO license on the portal(https://my.embotech.com) a user can
select one of the available variants which is best suited for the problem to be solved. At any
point, a user can decide to upgrade to a larger variant in order to include additional solver
methods in their available toolset for FORCESPRO.
The available variants are (smaller variants are included in larger ones):

• S (Variant S)
• M (Variant M)
• L (Variant L)

2.1 Variant Summary

In the tables below you can find a summary of the components provided with each variant
of FORCESPRO.

Table 2.1: Problem types supported for each variant
S M L

Problem Type
LP X X X
QP X X X
QCQP X X X
BI-QP X X
NLP (SQP) X X
NLP (IP) X
MINLP X
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Table 2.2: Interfaces provided for each variant
S M L

Interface
MATLAB Low-Level X* X X
Python Low-Level X* X X
MATLAB Y2F X X X
MathWorks MPC Toolbox™ (Linear MPC) X X X
MATLAB High-Level X** X
Python High-Level X** X
MathWorks MPC Toolbox™ (Nonlinear
MPC)

X** X

* No Binary Constraints
** Only with SQP method

2.2 Variant S

This variant is used for generation of convex solvers. This variant should be used for solving:
• LP problems
• QP problems
• QCQP problems

This variant is delivered with the following interfaces:
• MATLAB Low-level Interface (Low-level interface)
• Python Low-level Interface (Low-level interface)
• MATLAB Y2F Interface (Y2F Interface)
• MathWorks Model Predictive Control Toolbox™ - Linear MPC (MathWorks Linear MPC

Plugin)

2.3 Variant M

This variant further enables the generation of SQP solvers for NLPs and the solution of Binary-
Integer QPs. This variant should be used for solving:

• Binary-Integer QP problems (Binary constraints)
• NLP Problems using SQP methods (Sequential quadratic programming algorithm)

This variant is delivered with the following interfaces:
• MATLAB High-level Interface (High-level Interface) with codeoptions.solvemethod =

‘SQP_NLP’;

• Python High-level Interface (High-level Interface) with codeoptions.solvemethod =
‘SQP_NLP’

• MathWorks Model Predictive Control Toolbox™ - Nonlinear MPC (MathWorks Nonlinear
MPC Plugin) with options.SolverType = ‘SQP’;
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2.4 Variant L

This variant provides the full experience of FORCESPRO and enables all its features. This variant
further enables the solution of:

• NLP problems with Interior-Point Methods and SQP
• MINLP problems (Mixed-integer nonlinear solver)

This variant is delivered with the following interfaces:
• MATLAB High-level Interface (High-level Interface) with full support
• Python High-level Interface (High-level Interface) with full support
• MathWorks Model Predictive Control Toolbox™ - Nonlinear MPC (MathWorks Nonlinear

MPC Plugin) with full support

Chapter 2. License Variants 11
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Chapter 3

Installation

3.1 Obtaining FORCESPRO

FORCESPRO is a client-server code generation system. The user describes the optimization
problem using the client software, which communicates with the server for code generation
(and compilation if applicable). The client software is the same for all users, independent of
their license type.
In order to obtain FORCESPRO, follow the steps below:

1. Inquire a license from https://www.embotech.com/license-request or by directly contact-
ing licenses@embotech.com.

2. After receiving a license, if registered on the portal, the FORCESPRO client can be down-
loaded from the portal after assigning an Engineering Node. For more information see
https://my.embotech.com/readme. Otherwise the FORCESPRO client will be sent to you
via email.

3. Unzip the downloaded client into a convenient folder.

Note: The FORCESPRO client contains several inner ZIP-files for the Python client named
forcesproXY.zip. These do not need to be extracted!

3.2 Installation of the MATLAB Client

Add the path of the downloaded folder FORCES_PRO to the MATLAB path by using the com-
mand addpath DIRNAME, e.g. by typing:

addpath /home/user/FORCES_PRO

on your MATLAB command prompt. Alternatively, you can add the path of the FORCES_PRO
folder via the graphical user interface of MATLAB as seen in Figure 3.1.

Figure 3.1: Adding the FORCES_PRO folder to the MATLAB path.
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Having added the root folder of the FORCES PRO MATLAB client to the MATLAB path one
configures the client to the specific MATLAB version by running

FORCESconfigureClient;

in the MATLAB command window. After the FORCES PRO MATLAB client has been configured
one can save the MATLAB path in order to always have access to FORCES PRO when initiating
a new MATLAB session. Alternatively one perform the above 2 steps whenever initiating a new
MATLAB session.

3.2.1 System requirements

FORCESPRO is supported on Windows, macOS and the di�erent Linux distributions.
For the MATLAB and Simulink interfaces, 32 or 64 bit MATLAB 2012b (or higher) is required.
Older versions might work but have not been tested. A MEX compatible C compiler is also
required. A list of compilers that are supported by MATLAB can be found in https://www.
mathworks.com/support/sysreq/previous_releases.html.
Run:

mex -setup

to configure your C compiler in MATLAB.

3.2.2 Keeping FORCESPRO up to date

FORCESPRO is actively developed and client modifications are frequent. Whenever your client
version is not synchronized with the server version, you will receive a code generation error
notifying you that your client is out of date.
To update your client simply type:

updateClient

on your MATLAB command prompt. updateClient without any arguments uses the default
embotech server to grab the client, and updates all corresponding client files. The command:

updateClient(URL)

overrides the default server selection and uses the server located at URL instead.
Alternatively, the FORCESPRO client may also be updated through Python, see Keeping
FORCESPRO up to date.

3.3 Installation of the Python Client

FORCESPRO o�ers a Python interface that enables user to formulate a optimization problem,
generating a solver for it through communication with the FORCESPRO server, and calling the
generated solver directly from Python. It is contained within the FORCESPRO client package
together with the MATLAB Client, which can be obtained with a valid license as described in
Obtaining FORCESPRO.
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3.3.1 Quick Guide

If you want to get up and running quickly, we have compiled the most common commands
needed to go from a blank system to generating and executing the first solver in a example
below. If you encounter issues, please have a look at the more detailed description of the
required prerequisites below.
In the following, we assume you have obtained the FORCESPRO client as described in Ob-
taining FORCESPRO, and unzipped its files into the directory /path/to/forces/pro on Unix plat-
forms or C:\path\to\forces\pro on Windows. The following installation instructions slightly
di�er for the operating systems supported, so please refer to the appropriate section.

Windows (PowerShell)

C:\PythonXY\Scripts\pip.exe install numpy scipy suds-jurko casadi matplotlib
$env:PYTHONPATH="C:\path\to\forces\pro"
C:\PythonXY\python.exe C:\path\to\forces\pro\examples\robot_sim.py

Linux Ubuntu

pip3 install numpy scipy suds-jurko casadi matplotlib
sudo apt-get install gcc libomp-dev
export PYTHONPATH="/path/to/forces/pro":$PYTHONPATH
python3 /path/to/forces/pro/examples/robot_sim.py

Mac

xcode-select --install
brew install python3 libomp
python3 -m pip install numpy scipy suds-jurko casadi matplotlib
export PYTHONPATH="/path/to/forces/pro":$PYTHONPATH
python3 /path/to/forces/pro/examples/robot_sim.py

This assumes you have the Homebrew package manager already installed. If not, run the
following before any of the above instructions:

/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
→˓master/install.sh)"

3.3.2 Requirements

The Python client has been tested with the follwing configurations:

Python

A Python installation is required. Note that only compiled Python bytecode for the versions
listed below is currently shipped with the client:

• Python 2.7 (low-level convex problems only)
• Python 3.6
• Python 3.7
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• Python 3.8
If you require a di�erent version, please contact us at forces@embotech.com.
For purposes of readibility, for Windows, we will assume you have installed the respective
Python version into C:\PythonXY (where X is the major version number and Y the minor ver-
sion number) throughout the rest of this documentation. On Linux and Mac, we assume you
have Python 3 available in your PATH as python3, and Python 2.7 as python.

Python Packages

For any Python version, the following packages from the Python package index (PyPI) must
be installed in the PYTHONPATH:

• numpy (Tested with version 1.18.3)
• scipy (Tested with version 1.4.1)
• casadi (Version 3.5.1 required only for high-level interface)
• matplotlib (Required only for plotting in the example code)

Additionally, Python 2.7 requires the following packages:
• suds

Additionally, Python versions 3.x require the following packages:
• suds-jurko

All of these packages can be conveniently installed through the command-line by running
the following command from a terminal (Linux, Mac):

pip3 install numpy scipy casadi matplotlib suds-jurko

Or, on Windows:

C:\PythonXX\Scripts\pip.exe install numpy scipy casadi matplotlib suds-jurko

Available Compiler

Nonlinear symbolic problem formulations are translated into C code by the FORCES PRO
client. In order to generate solvers for these kinds of problems, a C compiler and linker must
thus be present on the host machine. The following compilers have been tested and are
supported by the FORCESPRO Python client:

• On Windows: Microsoft Visual Studio C Compiler 2019 and 2015 (Can be obtained by
downloading the Microsoft Visual Studio Community IDE)

• On Linux: GNU Compiler Collection (GCC), tested with version 9.3.0
• On Mac: Apple clang version 11.0.3 (Can be obtained by installing the XCode command-

line tools)
Additionally, on Linux, the following package must be installed if you wish to generate solvers
making use of parallel execution (options.parallel = True) or mixed-integer nonlinear problem
(MINLP) solvers:

sudo apt-get install libomp-dev

On Mac, for parallel solver generation and MINL-problems, the following package must be
installed through Homebrew:

16 Chapter 3. Installation



FORCESPRO User Manual

brew install libomp

3.3.3 Adding the FORCESPRO Python Client to your Python path

Once the FORCESPRO client has been downloaded and the requirements have been installed
as outlined above, you will need to tell the Python interpreter where to look for the forcespro
and forcespro.nlp packages which implement the FORCESPRO client interface in Python.
Doing so will allow you to write import forcespro or import forcespro.nlp in your scripts to
import the FORCESPRO functionality. To make the FORCESPRO client available this way, you
have several options:

Option A: Setting the PYTHONPATH environment variable

Add the FORCESPRO client directory to your PYTHONPATH before calling any scripts that
require FORCESPRO from the command line. In a Windows PowerShell this is done by:

$env:PYTHONPATH="C:\path\to\forces\pro"

In Windows cmd.exe:

set PYTHONPATH=C:\path\to\forces\pro

On Unix (Linux and Mac):

export PYTHONPATH=/path/to/forces/pro

After doing so, you can call any script that requires FORCESPRO, and the script may include
import forcespo or import forcespro.nlp statements without needing to know where your
actual FORCESPRO client directory is.

Option B: Setting sys.path inside Python scripts

Add the FORCESPRO client directory to sys.path before importing:

import sys
sys.path.insert(0, '/path/to/forces/pro') # On Unix
sys.path.insert(0, 'C:\\path\\to\\forces\\pro') # On Windows, note the doubly-
→˓escaped backslashes
import forcespro
import forcespro.nlp

Note that this reduces the portability of any scripts using FORCESPRO, as it hard-codes the
location of FORCESPRO inside the script.

3.3.4 Keeping FORCESPRO up to date

In order to obtain the latest version of the FORCESPRO client, a Python script for automatic
upgrading is available.
In order to use it, navigate to the FORCESPRO client directory and execute the updateClient.py
script in Python.

$ cd /path/to/forces/pro
$ python updateClient.py
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Alternatively, the FORCESPRO client can also be updated through MATLAB, see Keeping
FORCESPRO up to date.
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Chapter 4

Y2F Interface

YALMIP is a high-level modeling language for optimization in MATLAB. It is very convenient
to use for modeling various optimization problems, including convex quadratic programs, for
example. YALMIP allows you to write self-documenting code that reads very much like a
mathematical description of the optimization model.
To combine the computational e�ciency of FORCESPRO with the ease-of-use of YALMIP,
we have created the interface Y2F. Y2F very e�ciently detects the inherent structure in the
optimization problem, and uses the FORCESPRO backend to generate e�cient code for
it. All you need to do is to replace YALMIP’s optimizer function, which pre-builds the op-
timization problem such that subsequent evaluations become very inexpensive, by Y2F’s
optimizerFORCES function, which is fully API-compatible with optimizer.
This interface is provided with all variants of FORCESPRO, starting with Variant S.
You can read more about the concept of YALMIP’s optimizer here.

Important: The Y2F interface supports convex decision making problems, with or without
binary variables.

4.1 Installing Y2F

Y2F is included in the FORCESPRO client. If optimizerFORCES is not found on your MATLAB
path, you need to add the FORCES_PRO/Y2F/Y2F directory to it, e.g. by typing:

addpath /home/user/FORCES_PRO/Y2F/Y2F

on your MATLAB command prompt.
Of course, you also need a working installation of YALMIP, which you can download from
https://yalmip.github.io/download/.

4.2 Generating a solver

A YALMIP model consists of a constraint object, which we name const and an objective func-
tion obj. You can create an optimizer object that has most of the work YALMIP needs to do
before calling a solver (called canonicalization) already saved. The only parts missing are the
parameters of the problem, which you can specify when calling optimizer:
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P = optimizer(Con, Obj, Options, Parameters, WantedVariables); % YALMIP syntax

With Y2F, you can have the same syntax but creating a FORCESPRO solver:

P = optimizerFORCES(Con, Obj, Options, Parameters, WantedVariables,
→˓[ParameterNames], [OutputNames]);

where Options is a FORCES codeoptions struct (see the Solver Options section for more
information). The two last arguments are optional cell arrays of strings specifying the names
of the parameters and the wanted variables. These will be used for naming e.g. the in- and
output ports of the generated Simulink block.

4.3 Calling the solver

There are several ways of calling the generated solver:
1. Using the optimizerFORCES object, which again is API compatible with YALMIP’s
optimizer object:

[wantedVariableValues, exitflag, info = P{Parameters}; % YALMIP syntax

2. Using the generated Matlab (MEX) interface (type help solvername at the Matlab com-
mand prompt for more information):

problem.ParameterName1 = value1; problem.ParameterName2 = value2;
[output, exitflag, info] = solvername(problem);
wantedVariable = output.outputName1;

3. Via the generated Simulink block (see interfaces folder of the generated code).

4.4 Solver info

4.4.1 Exitflags

One should always check whether the solver has exited without an error before using the
solution. Possible values of exitflag are presented in Table 4.1.
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Table 4.1: Exitflag values
Exitflag Description
1 Optimal solution found to the requested accuracy.
2 (only branch-and-bound) A feasible point has been identified for which the ob-

jective value is no more than codeoptions.mip.mipgap*100 per cent worse
than the global optimum.

0 Timeout – maximum number of iterations or maximum computation time of
codeoptions.mip.timeout (only branch-and-bound) reached. The returned
solution is the best one found so far.

-1 (only branch-and-bound) Infeasible problem (problems solving the root relax-
ation to desired accuracy).

-2 (only branch-and-bound) Out of memory – cannot fit branch and bound nodes
into pre-allocated memory.

-7 The convex solver could not proceed due to stalled line search. The prob-
lem might be infeasible. Otherwise, please submit a bug report to sup-
port@embotech.com including all data necessary to reproduce the problem.
You can also run FORCESdiagnostics on your problem to check for most com-
mon errors in the formulation.

-10 The convex solver could not proceed due to an internal error. The prob-
lem might be infeasible. Otherwise, please submit a bug report to sup-
port@embotech.com including all data necessary to reproduce the problem.
You can also run FORCESdiagnostics on your problem to check for most com-
mon errors in the formulation.

-100 License error. If you have generated code with a simulation license, it will run
only on the machine from which the code has been generated. In some cases,
e.g. when connected to a VPN network, the FORCESPRO license checker pro-
duces a false negative. Re-run the code generation script in this case to make
sure licensing information is correctly set.

4.4.2 Additional diagnostics

The solver returns additional information to the optimizer in the info struct. Some of the
fields are described in Table 4.2. Depending on the method used, there will also be other
fields describing the quality of the returned result.

Table 4.2: Info values
Info Description
info.it Number of iterations. In branch-and-bound mode this is the number

of convex problems solved in total.
info.solvetime Total computation time in seconds.
info.pobj Value of the objective function.
info.it2opt (only branch-and-bound) Number of convex problems solved for find-

ing the optimal solution. Note that often the optimal solution is found
early in the search, but in order to certify (sub-)optimality, all branches
have to be explored.

4.5 Performance

A performance measurement for the interface when compared to other solvers called via
YALMIP and to the same problem formulated via the low-level interface of FORCESPRO (2
states, 1 input, box constraints, varying horizon) is presented in Figure 4.1. In this example, the
code generated directly from YALMIP is about 10 times faster than other solvers, and only a
factor 2 slower than the code generated with the low-level interface of FORCESPRO.
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Figure 4.1: Performance comparison of the Y2F interface of FORCESPRO.
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4.6 Examples

• Y2F interface: Basic example: Learn how to formulate problems in YALMIP easily, and
then use the Y2F interface to generate code with FORCESPRO.
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Chapter 5

MathWorks Linear MPC Plugin

As a result of a long-term collaboration, MathWorks Inc. and Embotech AG developed a MAT-
LAB® plugin for FORCESPRO. Users are now able to use the FORCESPRO solver in MATLAB®
and Simulink® from within the MATLAB® Model Predictive Control Toolbox. The plugin lever-
ages the powerful design capabilities of the Model Predictive Control Toolbox™ and the com-
putational performance of FORCESPRO. With FORCESPRO 2.0, toolbox users can now easily
define challenging control problems and solve long-horizon MPC problems more e�ciently.
Model Predictive Control Toolbox™ provides functions, an app, and Simulink® blocks for de-
signing and simulating model predictive controllers. The toolbox enables users to readily
specify plant and disturbance models, horizons, constraints, and weights. User-friendly con-
trol design capabilities of Model Predictive Control Toolbox™, combined with the powerful
numerical algorithms of FORCESPRO, enables code deployment of the FORCESPRO solver
on real-time hardware from within MATLAB® and Simulink®, in addition to the QP solvers
shipped by MathWorks. The new FORCESPRO interface comes with various features such as
Simulink blocks that can generate code runnable on embedded targets such as dSpace. The
parameters of the MPC algorithm, such as plant and disturbance model, prediction horizon,
constraints and move-blocking strategy can be specified directly. The toolbox enables users
to run closed-loop simulations and evaluation of controller performance. User-friendly MPC
design capabilities are combined with the powerful numerical algorithms of FORCESPRO.
This combination of the Model Predictive Control Toolbox™ and FORCESPRO enables code
deployment on real-time hardware. The generated code is highly optimized for fast compu-
tations and low memory footprint.
This interface is provided with all variants of FORCESPRO, starting with Variant S. It is compat-
ible with MATLAB R2019b, 2020a and 2020b.
The plugin mainly consists of the three following MATLAB commands which are described in
details in this chapter:

• mpcToForces for generating a FORCESPRO solver from an MPC object designed by the
Model Predictive Control Toolbox

• mpcmoveForces for calling the generated solver on a specific MPC problem instance
• mpcCustomSolver for using the FORCESPRO dense QP solver as a custom solver

An auxiliary file is also exposed to the users for generating di�erent solvers options, namely
mpcToForcesOptions.
The following LTI MPC features are supported:

• Continuous and discrete time plant models
• Move blocking
• Measured disturbances
• Unmeasured disturbances
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• Disturbance and noise models
• Uniform or time-varying weights on outputs, manipulated variables, manipulated vari-

ables rates and a global slack variable
• Uniform or time-varying bounds on outputs, manipulated variables and manipulated

variables rates
• Soft constraints
• Signal previewing on reference and measured disturbances
• Scale factors
• Nominal values
• Online updates of weights and constraints
• Built-in and custom state estimators

Currently, convex quadratic programs are supported by the MATLAB plugin. Extensions to
adaptive and linear time-varying are under development. The current limitations of the plugin
are the following:

• Mixed input-output constraints are not covered
• O�diagonal terms on the hessian of the objective cannot be implemented
• Unconstrained problems are not supported
• No single-precision solvers, only double precision currently
• No suboptimal solutions

5.1 Di�erent types of solvers

The plugin converts an MPC object (weights, bounds, horizons, prediction model) into a
quadratic program (QP) formulated via the FORCESPRO API. One key design decision is to
choose the decision variables in the quadratic program. There are two classic choices and
they lead to two di�erent formulations:

• Dense QP, where only the manipulated variables 𝑀𝑉 or ∆𝑀𝑉 are decision variables. In
this case, the hessian and linear constraints matrices are stored as dense matrices.

• Sparse QP, where 𝑀𝑉 , ∆𝑀𝑉 , the outputs 𝑂𝑉 and the states 𝑋 are decision variables. In
this case, all matrices have a block sparse structure as in Low-level interface.

Typically, a dense QP has fewer optimization variables, zero equality constraints and many
inequality constraints. Although the sparse QP is generally much larger than the dense QP its
structure can be e�ciently exploited to reduce the solve times. Besides, the dense formulation
has an inherent flaw, which is that the condition number increases with the horizon length,
especially when the plant states have large contributions to the plant inputs and outputs.
Thus, the best solution is to allow users to switch to the sparse formulation, which prevents
numerical blow-ups when the plant is unstable. Nevertheless, the dense formulation can be
beneficial in terms of solve time when there is an important amount of move-blocking.

5.2 Generating a QP solver from an MPC object

Given an MPC object created by the mpc command, users can generate a QP solver tailored
to their specific problem via the following command:
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% mpcobj is the output of mpc(...)
% options is the output of mpcToForcesOptions(...)

[coredata, statedata, onlinedata] = mpcToForces(mpcobj, options);

Two types of QP solvers can be generated via mpcToForces: a sparse solver that corresponds
to a multi-stage formulation as in Low-level interface and a dense solver that corresponds to
a one-stage QP with inequality constraints only.
The API of mpcToForces is described in more details in the tables below. The
mpcToForces command expects an MPC object mpcobj and a structure options generated
by mpcToForcesOptions as inputs.

Table 5.1: mpcToForces inputs
Input Description
mpcobj LTI MPC controller designed by Model Predictive Control Toolbox
options Object that provides solver generation options.

The outputs of mpcToForces consist of three structures coredata, statedata and onlinedata.
The FORCESPRO server generates two types of solvers:

• customForcesSparseQP when the option ‘sparse’ is set. An m file named customForcesS-
parseQP.m with the corresponding mex interface as well as the solver libraries and header
in the customForcesSparseQP folder. In this particular case (sparse), the name of the
solver can be set by users.

• customForcesDenseQP when the option ‘dense’ is set. An m file named customForces-
DenseQP.m with the corresponding mex interface as well as the solver libraries and
header in the customForcesDenseQP folder. In this particular case (dense), the solver
name cannot be changed by users.
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Table 5.2: mpcToForces outputs
Output Type Description
coredata Structure Stores constant Store constant data needed to construct

quadratic progam at run-time
statedata Structure Represents prediction model states and last optimal MV.

The index 𝑘 stands for the current simulation time.
It contains 4 fields:
When built-in state estimation is used:
Plant is the estimated plant state 𝑥𝑝[𝑘|𝑘 − 1]
Disturbance is the estimated disturbance states 𝑥𝑑[𝑘|𝑘 − 1]
Noise is the estimated measurement noise states 𝑥𝑛[𝑘|𝑘−1]
LastMove is the optimal manipulated variables at the previ-
ous sample time
In this case, users should not manually change any field at
run-time.
When custom state estimation is used:
Plant is the estimated plant state 𝑥𝑝[𝑘|𝑘]
Disturbance is the estimated disturbance states 𝑥𝑑[𝑘|𝑘]
Noise is the estimated noise states 𝑥𝑛[𝑘|𝑘]
LastMove is the optimal manipulated variables at the previ-
ous solve
In this case, user should manually update Plant, Disturbance
(if used), Noise (if used) fields at run-time but leave LastMove
alone.

onlinedata Structure Represent online signals
It contains up to three fields:
signals, a structure containing following fields:
ref (references of Output Variables)
mvTarget (references of Manipulated Variables)
md (when Measured Disturbance is present)
ym (when using the built-in estimator)
externalMV (when UseExternalMV is true in the options ob-
ject)
weights, a structure containing the following fields:
y (when UseOnlineWeightOV is enabled)
u (when UseOnlineWeightMV is enabled)
du (when UseOnlineWeightMVRate is enabled)
ecr (when UseOnlineWeightECR is enabled)
constraints, a structure containing the following fields:
vmin (when UseOnlineConstraintOVMin is enabled)
vmax (when UseOnlineConstraintOVMax is enabled)
umin (when UseOnlineConstraintMVMin)
umax (when UseOnlineConstraintMVMax)
dumin (when UseOnlineConstraintMVRateMin)
dumax (when UseOnlineConstraintMVRateMax)

In order to provide the code-generation options to mpcToForces, the user needs to run the
command mpcToForcesOptions with one of the following two arguments as input:

• “dense” for generating the options of a one-stage dense QP solvers
• “sparse” for generating the options a multi-stage QP solver.

The structures provided by the mpcToForcesOptions command have the following MPC re-
lated fields in common between the “dense” and “sparse” case:

• SkipSolverGeneration. When set to True, only structures are returned. If set to False, a
solver mex interface is generated and the structures are returned. Default value is False.
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• UseOnlineWeightOV. When set to True, it allows Output Variables weights to vary at run
time. Default is False.

• UseOnlineWeightMV. When set to True, it allows Manipulated Variables weights to vary
at run time. Default is False.

• UseOnlineWeightMVRate. When set to True, it allows weights on the Manipulated Vari-
ables rates to vary at run time. Default is False.

• UseOnlineWeightECR. When set to True, it allows weights on the ECR to change at run
time. Default is False.

• UseOnlineConstraintOVMax. When set to True, it allows updating the upper bounds on
Output Variables at run time. Default is False.

• UseOnlineConstraintOVMin. When set to True, it allows updating the lower bounds on
Output Variables at run time. Default is False.

• UseOnlineConstraintMVMax. When set to True, it allows updating the upper bounds on
Manipulated Variables at run time. Default is False.

• UseOnlineConstraintMVMin. When set to True, it allows updating the lower bounds on
Manipulated Variables at run time. Default is False.

• UseExternalMV. When set to True, the actual Manipulated Variable applied to the plant
at time 𝑘 − 1 is provided as output. Default is False.

• UseMVTarget. When set to True, an MV reference signal is provided via the onlinedata
structure. In this case, MV weights should be positive for proper tracking. When false, the
MV reference is the nominal value by default and MV weights should be zero to avoid
unexpected behaviour. Default is False.

Both the “dense” and “sparse” options structures have the following solver related fields in
common:

• ForcesServer is the FORCESPRO server url. Default is forces.embotech.com.
• ForcesMaxIteration is the maximum number of iterations in a FORCESPRO solver. De-

fault value is 50.
• ForcesPrintLevel is the logging level of the FORCESPRO solver. If equal to 0, there is no

output. If equal to 1, a summary line is printed after each solve. If equal to 2, a summary
line is printed at every iteration. Default value is 0.

• ForcesInitMethod is the initialization strategy used for the FORCESPRO interior point al-
gorithm. If equal to 0, the solver is cold-started. If equal to 1, a centered start is computed.
Default value is 1.

• ForcesMu0 is the initial barrier parameter. It must be finite and positive. Its default value
is equal to 10. A small value close to 0.1 generally leads to faster convergence but may be
less reliable.

• ForcesTolerance is the tolerance on the infinity norm of the residuals of the inequality
constraints. It must be positive and finite. Its default value is 10−6.

• ForcesTargetPlatform for choosing a target platform to deploy the solver. Currently,
dSpace, Speedgoat and BeagleBone-Blue are supported.

In the “sparse” solver case, there are four more fields:
• SolverName for customuzing the solver name.
• UseOnlineConstraintMVRateMax for setting MVRate upper bounds.
• UseOnlineConstraintMVRateMin for setting MVRate lower bounds.
• UseOneSlackVariablePerStep to enable one slack variable per prediction step.
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5.3 Solving a QP from MPC online data

Once a QP solver has been generated it can be used to solve online MPC problems via the
MATLAB command mpcmoveForces as follows

% the coredata, statedata and onlinedata structures are outputs of
→˓mpcToForces

[mv,statedata,info] = mpcmoveForces(coredata,statedata,onlinedata);

The outputs of the mpcmoveForces command are described below. In the table below 𝑛𝑚

denotes the number of manipulated variables, 𝑛𝑥 stands for the state dimension of the system
implemented in the MPC object, 𝑝 is the prediction horizon and 𝑘 is the current solve time
instant.

Table 5.3: mpcmoveForces outputs
Output Type Description
mv Vector of size nm Optimal manipulated variables at current solve time

instant
statedata Structure Initialized by mpcToForces
info Structure Information about the FORCES solve

Uopt is a 𝑝 × 𝑛𝑚 matrix for the optimal manipulated
variables over the prediction horizon 𝑘 to 𝑘 + 𝑝− 1
Yopt is a 𝑝×𝑛𝑦 matrix for the optimal output variables
over the prediction horizon 𝑘 + 1 to 𝑘 + 𝑝
Xopt is a 𝑝 × 𝑛𝑥 matrix for the optimal state variables
over the prediction horizon 𝑘 + 1 to 𝑘 + 𝑝
Slack is a 𝑝× 1 vector of slack variables
Exitflag is the FORCESPRO solve exit flag. If it is equal
to 1, an optimal solution has been found. If it is equal to
0, the maximum number of solver iterations has been
reached. A negative flag means that the solver failed
to find a feasible solution.
Iterations is the number of solver iterations upon
convergence or failure
Cost is the cost returned by the solver

5.4 Using the FORCESPRO MPC Simulink block

Both the FORCESPRO sparse and dense solvers can be used inside Simulink. The dense QP
formulation is usable from the shipped Simulink MPC controller block directly. For this, the
following steps are needed:

• Generate a custom dense FORCESPRO solver

options = mpcToForcesOptions('dense');
mpcToForces(mpcobj, options);

• Set the following settings in the MPC object

mpcobj.Optimizer.CustomSolver = true;
mpcobj.Optimizer.CustomSolverCodeGen = true;

The FORCESPRO sparse QP solver is also available via the Model Predictive Control Toolbox
in Simulink. A dedicated block has been implemented for this purpose. All features of the
MATLAB plugin are available through this Simulink block, namely measured disturbances,
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external manipulated variables, references for manipulated variables, custom state estimation
as well as online weights and constraints. Configuring the block is done via the user interface
shown in Figure 5.1 below. Currently only the sparse QP solver can be used via the Simulink
API.

Figure 5.1: FORCESPRO MPC block configuration window

In order to run a simulation using the FORCESPRO Simulink block, a solver first needs to be
generated via the following code for instance:

%% Generate FORCESPRO sparse QP solver
options = mpcToForcesOptions('sparse');
% For this example we need to specify that online weights on the outputs,
% the input rates and the ECR slacks are used
options.UseOnlineWeightOV = true;
options.UseOnlineWeightMVRate = true;
options.UseOnlineWeightECR = true;
[coredata, statedata, onlinedata] = mpcToForces(mpcobj, options);

The structures coredata and statedata needed by the FORCESPRO solver are then provided
to the Simulink block via the window shown in Figure 5.1.

• coredata is the variable name of the core data structure generated by mpcToForces in
the base workspace.
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• initial state data is the variable name of the state data structure generated by mpcTo-
Forces in the base workspace. The user is expected to populate this structure with initial
states of the plant and disturbances.

• md checkbox should be selected if MD channels exist in the MPC object.
• x[k|k] checkbox needs to be selected for using a custom state estimator.
• Optional outputs provide more information. It is recommended to monitor the qp.status

port to check whether the MPC block produces a feasible solution.
The integration of the FORCESPRO MPC block in a Simulink model is shown in Figure 5.2
below.

Figure 5.2: Simulink model illustrating the integration of the FORCESPRO MPC block

The Simulink model can be run either by clicking on the Run button in Simulink or from
MATLAB using the sim command.

% Start simulation.
mdl = 'forcesmpc_onlinetuning';
open_system(mdl); % Open Simulink(R) Model
sim(mdl); % Start Simulation

Finally, the FORCESPRO MPC block is available via the Library browser once the user has
updated his client to the latest version of FORCES, as shown in Figure 5.3 below.

Figure 5.3: FORCESPRO MPC block in the library browser
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5.5 Deploy to dSpace MicroAutoBox II using the FORCESPRO
MPC Simulink block

The FORCESPRO sparse solvers can be used inside Simulink to deploy to dSpace MicroAuto-
Box II. All features of the MATLAB plugin are available through this Simulink block, namely
measured disturbances, external manipulated variables, references for manipulated variables,
custom state estimation as well as online weights and constraints. Configuring the block is
done via the user interface shown in Figure 5.4 below.

Figure 5.4: FORCES MPC block configuration

1) In order to run an MPC simulation in dSPACE using the FORCESPRO block, a solver first
needs to be generated via the following code:

%% Generate FORCESPRO sparse QP solver
options = mpcToForcesOptions('sparse');
% For this example we need to specify that online weights on the outputs,
% the input rates and the ECR slacks are used

(continues on next page)
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(continued from previous page)
options.UseOnlineWeightOV = true;
options.UseOnlineWeightMVRate = true;
options.UseOnlineWeightECR = true;
options.ForcesTargetPlatform = 'dSPACE-MABII';

[coredata, statedata, onlinedata] = mpcToForces(mpcobj, options);

2) Note that the option ForcesTargetPlatform needs to be specified. The structures core-
data and statedata needed by the FORCESPRO solver are then provided to the Simulink
block via the window shown in Figure 5.4. The integration of the FORCESPRO MPC block
in a Simulink model is shown in Figure 5.5 below.

Figure 5.5: FORCESPRO MPC block integration in a Simulink model

3) When creating the Simulink Model, in the Configurations, in the “Code Generation” tab,
set the options (see Figure 5.6 below):

• System target file: rti1401.tlc
• Language: C
• Generate makefile: On
• Template makefile: rti1401.tmf
• Make command: make_rti

4) The Simulink model can be used for Code Generation from MATLAB in the usual way.

% Start Code Generation.
mdl = 'forcesmpc_onlinetuning_dSpace_MicroAutoBoxII';
open_system(mdl); % Open Simulink(R) Model
load_system(mdl); % Load Simulink(R) Model
rtwbuild(mdl); % Start Code Generation

5) After code generation the dspace compiler (Microtec PowerPC) generated files to use to
run your model on the MicroAutoBox II (see Figure 5.7).

6) Open dSpace Control Desk and select create new project (see Figure 5.8).
7) Name the project and the experiment (see Figure 5.9 and Figure 5.10).
8) Select the platform to which you will deploy the generated executable (see Figure 5.11).
9) Import the variable description file forcesmpc_onlinetuning_dSpace_MicroAutoBoxII.

sdf in order to have access to the model variables and see the results of the execution
(see Figure 5.12 and Figure 5.13).

10) Click Finish to create the project (see Figure 5.14).
11) On the project layout select the tab Variables and on the

forcesmpc_onlinetuning_dSpace_MicroAutoBoxII category expand Model Root
(see Figure 5.15).
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Figure 5.6: Configure Code Generation for dSPACE MicroAutoBox II

12) Select FORCES MPC (Sparse QP) and Drag & Drop all the output variables together to
the Layout. In the opened menu select Time Plotter (see Figure 5.16).

13) Drag & Drop the output variables again and now choose Display (see Figure 5.17).
14) To see all the plots concurrently right-click on the left of the Y-axis and select

YAxes-view> Horizontal stacked (see Figure 5.18).
15) Select the Platforms/Devices tab. Right-Click on your platform and

select Real-Time Application> Load. Choose the executable file
forcesmpc_onlinetuning_dSpace_MicroAutoBoxII.ppc (see Figure 5.19 and Fig-
ure 5.20).

16) Select Go Online and Start Measuring to see the results. (see Figure 5.21 and Figure
5.22).

5.6 Examples

The plugin comes with several examples to demonstrate its functionalities and flexibility.
You can find the MATLAB code of this example to try them out for yourself in the examples/
matlab/mpc-toolbox-plugin/linearModels folder that comes with your client.
The packaged examples are the following ones:

• forcesmpc_cstr.m is a linear time-invariant (LTI) MPC example with unmeasured out-
puts. It also shows how to use the MATLAB Coder for generating and running mpcmove-
Forces as a mex interface, which results in lower simulation times.
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Figure 5.7: The generated files from the Simulink Code Generation
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Figure 5.8: Start a new project

Figure 5.9: Name your project
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Figure 5.10: Name your experiment

Figure 5.11: Select the MicroAutoBox platform
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Figure 5.12: Import the variable description file

Figure 5.13: Select the sdf file with the variables description

Chapter 5. MathWorks Linear MPC Plugin 39



FORCESPRO User Manual

Figure 5.14: Click Finish to create the project

Figure 5.15: Find the model root in the variables tab

40 Chapter 5. MathWorks Linear MPC Plugin



FORCESPRO User Manual

Figure 5.16: Add the variables as plots

Figure 5.17: Add the variables as displays

Chapter 5. MathWorks Linear MPC Plugin 41



FORCESPRO User Manual

Figure 5.18: Select to show all the signals on the same plot with their own Y-axes

Figure 5.19: Load the application on the dSPACE MicroAutoBox II

Figure 5.20: Select the executable to run the experiment
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Figure 5.21: Buttons Go Online and Start Measuring to receive execution results

Figure 5.22: Plots and results from experiment on dSPACE MicroAutoBox II

• forcesmpc_targets.m is an LTI MPC example with a reference on one manipulated
variables

• forcesmpc_preview.m is an LTI MPC example with previewing on the output reference
and the measured disturbance

• forcesmpc_motor.m is an LTI MPC example with state and input constraints
• forcesmpc_miso.m is an LTI MPC example with one measured output, one manipulated

variable, one measured disturbance, and one unmeasured disturbance
• forcesmpc_simplelti.m demonstrates a simple LTI MPC designed
• forcesmpc_linearize.m is an example of linear MPC around an operating point of a

nonlinear system.
• forcesmpc_customqp.m shows how to use the FORCESPRO dense QP solver as a custom

solver in an MPC object
• forcesmpc_run_onlinetuning.m demonstrates how to run the MPC Simulink block.
• forcesmpc_run_onlinetuning_dSpace_MicroAutoBoxII.m demonstrates how to

generate code for dSpace MicroAutoBox II using the MPC Simulink block.
The forcesmpc_linearize.m example is described in more details below. First, the linearized
model and the operating point are loaded from a MAT file.

%% Load plant model linearized at its nominal operating point (x0, u0, y0)
load('nomConditionsLinearize.mat');

An MPC controller object is then created with a prediction horizon of length 𝑝 = 20, a control
horizon 𝑚 = 3 and a sampling period 𝑇𝑠 = 0.1 seconds as explained here.
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%% Design MPC Controller
% Create an MPC controller object with a specified sample time |Ts|,
% prediction horizon |p|, and control horizon |m|.
Ts = 0.1;
p = 20;
m = 3;
mpcobj = mpc(plant,Ts,p,m);

Nominal values need to be set in the MPC object.

% Set the nominal values in the controller.
mpcobj.Model.Nominal = struct('X',x0,'U',u0,'Y',y0);

Constraints are set on the manipulated variables and an output reference signal is provided.

% Set the manipulated variable constraint.
mpcobj.MV.Max = 0.2;

% Specify the reference value for the output signal.
r0 = 1.5*y0;

From the MPC object and a structure of options, a FORCESPRO solver can be generated.

% Create options structure for the FORCESPRO sparse QP solver
options = mpcToForcesOptions();
% Generates the FORCESPRO QP solver
[coredata, statedata, onlinedata] = mpcToForces(mpcobj, options);

Once a reference signal has been constructed, the simulation can be run using
mpcmoveForces.

for t = 1:Tf
% A measurement noise is simulated
Y(:, t) = dPlant.C * (X(:, t) - x0) + dPlant.D * (U(:, t) - u0) + y0 +

→˓0.01 * randn;
% Prepare inputs of mpcmoveForces
onlinedata.signals.ref = r(t:min(t+mpcobj.PredictionHorizon-1,Tf),:);
onlinedata.signals.ym = Y(:, t);
% Call FORCESPRO solver
[mv, statedata, info] = mpcmoveForces(coredata, statedata, onlinedata);
if info.ExitFlag < 0

warning('Internal problem in FORCESPRO solver');
end
U(:, t) = mv;
X(:, t+1) = dPlant.A * (X(:, t) - x0) + dPlant.B * (U(:, t) - u0) + x0;

end

The resulting input and output signals are shown in Figure Figure 5.23 and Figure Figure 5.24
respectively.
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Figure 5.23: Manipulated variable computed by the FORCESPRO plugin.

Figure 5.24: Output variable computed by the FORCESPRO plugin.
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Chapter 6

MathWorks Nonlinear MPC Plugin

6.1 Introduction

As a result of a long-term collaboration, MathWorks Inc. and Embotech AG have extended the
Model Predictive Control Toolbox™ with a plugin for the FORCESPRO nonlinear solvers. Users
are now able to use the FORCESPRO nonlinear interior-point (IP) and sequential quadratic
programming (SQP) solvers in MATLAB® and Simulink® from within the MATLAB® Model
Predictive Control Toolbox within the nonlinear MPC API. This plugin leverages the powerful
design capabilities of the Model Predictive Control Toolbox™ and the computational perfor-
mance of FORCESPRO. FORCESPRO extends the Model Predictive Control Toolbox with code-
generated IP and SQP solvers that are not based on finite-di�erence derivatives computation,
resulting in faster convergence. Thanks to FORCESPRO, the nonlinear API now comes with
two classes of nonlinear solvers compatible with code generation that can be deployed to
various real-time targets.
The FORCESPRO nonlinear MPC plugin consists of the following two API methods, which are
covered in details later:

• nlmpcToForces generates a FORCESPRO nonlinear solver from a nonlinear MPC (NMPC)
object designed by the Model Predictive Control Toolbox

• nlmpcmoveForces calls the generated solver on a specific NMPC problem instance
The nonlinear plugin also comes with a Simulink® library that enables users to run the FORCE-
SPRO solvers from within their Simulink® models. It is compatible with MATLAB R2020a and
R2020b.
This interface is provided with Variant L and partially with Variant M of FORCESPRO.

6.2 Defining a nonlinear model

In order to call the FORCESPRO code generation, a nonlinear MPC object needs to be built
from a Model object. The process is essentially the same as the one described here. The model
dynamics and output functions need to be provided as MATLAB functions via the properties
Model.StateFcn and Model.OutputFcn of a nonlinear MPC object. However one should note
that the FORCESPRO code generation ignores the jacobian functions that may be provided in
Jacobian.StateFcn and Jacobian.OutputFcn, since these will be automatically generated by
the automatic di�erentiation tool CasADi. Moreover, the following requirements on the fields
Model.StateFcn and Model.OutputFcn need to be fulfilled for the plugin to work seamlessly:

• they must be the name of a function file, not an anonymous functions
• they must be compatible with MATLAB code generation
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• they must follow CasADi coding conventions. Most importantly, the state
derivative dxdt has to be built explicitly, as shown below.

dxdt = [expression; expression; ...]

As a word of caution, the following code snippet will result in an undesired behaviour from
CasADI.

dxdt = x; % Do not write this, CasADI takes it as reference !
dxdt(1,1) = a1*x(1) + a2*x(2) + b1*u(2);
dxdt(2,1) = a3*x(1) + a4*x(2) + b2*u(2);
dxdt(3,1) = x(2)*x(1) + x(4);
dxdt(4,1) = (1/tau)*(-x(4) + u(1));
dxdt(5,1) = x(1) + x(3)*x(6);
dxdt(6,1) = x(2) - 0*x(3);

FORCESPRO calls the model functions from its own objects, which follow an assigment by
reference convention, hence the assignement dxdt = x is made by reference. This implies that
updating dxdt also changes x, which builds the wrong symbolic dynamics.
If the model contains a parameter, it must be a single vector parameter. In other words,
users need to set nlobj.Model.NumberOfParameters = 1 and at run-time write online-
data.Parameter = value where value is a column vector.

6.3 Generating an NLP solver from an “nlmpc” object

The MATLAB nonlinear MPC API can now be set to use the FORCESPRO code generation.
The main di�erence compared to the existing nonlinear MPC from The MathWorks based on
the fmincon solver from the Optimization Toolbox is a code generation step that takes the
nonlinear MPC object as argument. This is needed in order to build a mex interface for a
FORCESPRO nonlinear solver that is customized to the model provided by the user.
Given an NLMPC object created by the nlmpc command, users can generate an IP or SQP
nonlinear solver tailored to their specific problem via the following command:

% nlobj is the output of nlmpc(...)
% options is the output of nlmpcToForcesOptions(...)

[coredata, onlinedata] = nlmpcToForces(nlobj, options);

Two types of nonlinear solvers can be generated via nlmpcToForces: a nonlinear interior-point
solver and a sequential quadratic programming solver whose features are covered in details
in Sequential quadratic programming algorithm.
The nlmpcToForces API is described in more details in the tables below. The nlmpcToForces
command expects an NLMPC object nlobj and a structure options as arguments. Is also has
a few limitations as it currently does not support custom cost and constraints. It also requires
double precision.

Table 6.1: nlmpcToForces arguments
Input Description
nlobj NMPC object constructed by Model Predictive Control Toolbox (see here)
options Object that provides solver generation options.

The outputs of nlmpcToForces consist of two structures coredata, a structure containing the
constant NLMPC information used by nlmpcmoveForces and onlinedata, a structure that
allows you to specify online signals such as x, lastMV, ref, MVTarget, md as well as weights or
bounds used by nlmpcmoveForces.
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In order to provide the solver options to nlmpcToForces, the user needs to run the command
nlmpcToForcesOptions. The options structure contains the following fields:

• SolverName. This is the solver name used by MEX and C files. Its default value is
myForcesNLPSolver.

• SolverType. This option specifies which FORCES nonlinear programming solver to use.
Its default value is InteriorPoint. To use the FORCESPRO SQP algorithm set the value
to SQP.

• SkipSolverGeneration. This option indicates whether nlmpcToForces should generate
the custom NLP solver. When true, nlmpcToForces will return structures without regen-
erating the MEX and C files. Its default value is false.

• Server. This option specifies the FORCES server address for remote solver generation. Its
default value is https://forces.embotech.com.

• PrintLevel. This option specifies the amount of information displayed in the solver log.
– 0: no output will be written
– 1: summary line of each solve
– 2: summary line of each iteration

Its default value is 0.
• IntegrationNodes. This option specifies the the number of intermediate points between
𝑡 and 𝑡 + 𝑇𝑠 during numerical integration of a continuous time model. Use larger values
when the plant is sti� at the price of computational e�ciency. Its default value is 1. The
approach used here is refered to as direct multiple shooting.

• x0. This option is used to create initial guess of optimal state trajectory at cold start. It
must be a column vector of nx-by-1. The typical value should be the initial state of the
prediction model. If it is left empty, zeros will be used for cold start. Its default value is [].

• mv0. This option is used to create initial guess of optimal manipulated variable trajectory
at cold start. It must be a column vector of nmv-by-1. The typical value should be the last
known control action. If it is left empty, zeros will be used for cold start.

• Parameter. This option should be specified if the prediction model has a parameter. It
must be a column-vector and it can be updated at run-time. Its default value is false.

• UseMVTarget. This option enables/disables MV reference signal. When equal to true, the
MV reference signal is provided via the onlinedata structure. In this case, MV weights
should be positive for proper tracking. When equal to false, the MV reference is 0 by
default. In this case, MV weights should be zero to avoid unexpected behavior. Default
value is false.

• UseOnlineWeightOV. This option enables/disables online OV weight change. When equal
to true, OV weight needs to be provided via onlinedata structure. Its default value is
false.

• UseOnlineWeightMV. This option enables/disables online MV weight change. When
equal to true, MV weight needs to be provided via onlinedata structure. Its default
value is false.

• UseOnlineWeightMVRate. This option enables/disables online MVRate weight change.
When equal to true, MVRate weight needs to be provided via onlinedata structure. Its
default value is false.

• UseOnlineWeightECR. This field enables/disables online ECR weight change. When
equal to true, ECR weight needs to be provided via onlinedata structure. Its default
value is false.

• UseOnlineConstraintStateMax. This option enables/disables online state upper bound
change. When equal to true, state upper bound needs to be provided via onlinedata
structure. Its default value is false.
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• UseOnlineConstraintStateMin. This field enables/disables online state lower bound
change. When equal to true, state lower bound needs to be provided via onlinedata
structure. Its default value is false.

• UseOnlineConstraintOVMax. This field enables/disables online OV upper bound change.
When equal to true, OV upper bound needs to be provided via the onlinedata structure.
Its default value is false.

• UseOnlineConstraintOVMin. This option enables/disables online OV lower bound
change. When equal to true, OV lower bound needs to be provided via the onlinedata
structure. Its default value is false.

• UseOnlineConstraintMVMax. This field enables/disables online MV upper bound change.
When equal to true, MV upper bound needs to be provided via the onlinedata structure.
Its default value is false.

• UseOnlineConstraintMVMin. This field enables/disables online MV lower bound change.
When equal to true, MV lower bound needs to be provided via the onlinedata structure.
Its default value is false.

• UseOnlineConstraintMVRateMax. This option enables/disables online MVRate upper
bound change. When equal to true, MVRate upper bound needs to be provided via
the onlinedata structure. Its default value is false.

• UseOnlineConstraintMVRateMin. This option enables/disables online MVRate lower
bound change. When equal to true, MVRate lower bound needs to be provided via
the onlinedata structure. Its default value is false.

The following set of options are specific to the nonlinear interior point solver:
• IP_MaxIteration. This field specifies the maximum number of iterations in the interior

point solver. When the maximum number of iterations is reached (i.e. ExitFlag is 0), the
NLP solver aborts calculations and the result should be discarded. Default value is 200.

• IP_Mu0. This field specifies initial barrier parameter. It must be positive and its default
value is 0.1.

• IP_BarrierStrategy. This option specifies the strategy used to update the barrier parame-
ter at every iteration of the nonlinear interior point solver. It needs to be either monotone
or loqo. logo often leads to faster convergence, while monotone may help convergence
for di�cult problems. Default value is loqo.

• IP_LinearSolver. This option sets the linear solver. It must be either normal_eqs,
symm_indefinite, or symm_indefinite_fast. With normal_eqs, the KKT system is solved
in normal equations form. With symm_indefinite, the KKT system is solved using block-
indefinite factorizations. With symm_indefinite_fast, the KKT system is solved in sym-
metric indefinite form, using regularization and positive definite Cholesky factorizations
only. Default value is normal_eqs.

• IP_EqualityTolerance. This option specifies the tolerance on the nonlinear equality con-
straints used by the nonlinear interior point solver. It must be positive. Default value is
10−6.

• IP_InequalityTolerance. This field specifies the tolerance on the nonlinear inequality con-
straints used by the interior-point solver. It needs to be positive and its default value is
10−6.

• IP_StationarityTolerance. This option specifies the tolerance on the stationarity measure
used in the nonlinear interior point solver. It needs to be positive and its default value is
10−5.

The following set of options are specific to the sequential quadratic programming solver:
• SQP_MaxIteration. This field specifies the maximum number of iterations used by the

inner QP solver. Its default value is 50.
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• SQP_MaxQPS. This enables the SQP solver to solve a fixed amount of quadratic approx-
imations at every call to the solver. In general, the more quadratic approximations are
solved, the more accurate control performance is achieved. The tradeo� is that the sol-
vetime also increases. The default value is 1.

• SQP_RegHessian. This field stands for the level of regularization of the hessian approxi-
mation. Increasing this parameter may help if the SQP solver returns exitflag −8 on your
problem. The default value is 5 · 10−9.

• SQP_EqualityTolerance. This option specifies the tolerance on the nonlinear equality
constraints. It must be positive and its default value is 10−6.

• SQP_InequalityTolerance. This option specifies the tolerance on the linear inequality
constraints. It must be positive and its default value is 10−6.

• SQP_StationarityTolerance. This field specifies the tolerance on stationarity. It must be
positive and its default value is 10−5.

6.4 Simulation in MATLAB and Simulink

Once a FORCESPRO nonlinear solver has been generated by calling nlmpcToForces, optimal
control moves can be calculated in MATLAB by using nlmpcmoveForces. This API method
expects a coredata structure as returned by nlmpcToForces as well as the other inputs de-
scribed in Table below.

Table 6.2: nlmpcmoveForces arguments
Input Description
coredata A structure containing the NLMPC settings. It is generated by the

nlmpcToForces method and used as a constant
x A 𝑛𝑥-by-1 column vector, representing the current prediction model states
lastMV A 𝑛𝑚𝑣-by-1 column vector, representing the control action applied to the

plant at the previous control interval
onlinedata A structure containing information such as references, measured distur-

bances, online constraints and weights

The outputs of nlmpcmoveForces are described in the table below.

Table 6.3: nlmpcmoveForces outputs
Output Description
mv Optimal control moves computed by a FORCESPRO solver
onlinedata A structure prepared by nlmpcmoveForces for the next control interval. The

x0 and mv0 fields are populated as the initial guess to be used at the next
control interval

info A structure containing extra information about the solver run

6.5 Code generation in MATLAB and Simulink

The nlmpcmoveForces command can be turned into a MEX interface named nlmpc-
move_<solvername> by means of the SkipSolverGeneration. If the option is set to true, then
no MEX interface is built by the MATLAB Coder. If it is set to false, then the nlmpcmove MEX
interface is generated and compiled, which requires the MATLAB Coder.
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6.6 Examples

Two examples illustrating the FORCESPRO nlmpc plugin are desribed below. The first example
is entirely run by a MATLAB script, whereas the second one is based on the FORCESPRO nlmpc
Simulink block.

6.6.1 Controlling a CSTR reactor

In this example we create a nonlinear MPC controller for a CSTR reactor using the MathWorks
Nonlinear MPC Plugin. The objective is to control the concentration 𝐶𝐴 of reagent 𝐴.
You can find the code of this example to try it out for yourself in the examples/matlab/
mpc-toolbox-plugin/nonlinearModels/nlmpc_cstr folder that comes with your FORCE-
SPRO client.
Click here for a detailed description of the model. The state of our plant will be denoted by 𝑥,
while our control input will be denoted by 𝑢.

𝑥1 : Reactor temparature (𝐾)

𝑥2 : Concentration of 𝐴 in reactor tank
(︂
𝑘𝑔𝑚𝑜𝑙

𝑚3

)︂
𝑢1 : Jacket coolant temperature (𝐾)

𝑢2 : Concentration of A in inlet feed stream
(︂
𝑘𝑔𝑚𝑜𝑙

𝑚3

)︂
𝑢3 : Inlet feed stream temperature (𝐾)

The system dynamics are given by the following first order di�erential equation

𝑥1 = (𝑢3 − 𝑥1) + 0.3 · (𝑢1 − 𝑥1) + 11.92 · 27944640 · exp(−5894.14
𝑥1

) · 𝑢2

𝑥2 = (𝑢2 − 𝑥2) − 27944640 · exp(−5894.14
𝑥1

) · 𝑢2

For the purpose of this demonstration the MATLAB function describing the state dynamics
will be denoted by exocstrStateFcnCT. Our output 𝑦 is simply given by the concentration of
𝐴:

𝑦 = 𝑥2

Creating an NLMPC object

The MATLAB function implementing this output will be denoted by exocstrOutputFcn. With
the implemented exocstrStateFcnCT and exocstrOutputFcn MATLAB functions at hand we
can go ahead create our NLMPC object. The following code-snippet constructs the NLMPC
object and specifies our model.

nx = 2;
ny = 1;
nu = 3;
nlobj = nlmpc(nx,ny,'MV',1,'MD',[2 3]);
Ts = 0.5;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = 6;
nlobj.ControlHorizon = [2 2 2];
nlobj.MV.RateMin = -5;

(continues on next page)

52 Chapter 6. MathWorks Nonlinear MPC Plugin

https://ch.mathworks.com/help/mpc/ug/nonlinear-model-predictive-control-of-exothermic-chemical-reactor.html


FORCESPRO User Manual

(continued from previous page)
nlobj.MV.RateMax = 5;
nlobj.Model.StateFcn = 'exocstrStateFcnCT';
nlobj.Model.OutputFcn = 'exocstrOutputFcn';

Specifying solver options

The followowing specifies the code options specific to FORCESPRO’s MathWorks Nonlinear
MPC Plugin:

options = nlmpcToForcesOptions();
options.SolverName = 'CstrSolver';
options.SolverType = 'SQP';
options.IntegrationNodes = 5;
options.SQP_MaxQPS = 5;
options.SQP_MaxIteration = 500;
options.x0 = [311.2639; 8.5698];
options.mv0 = 298.15;

Generating the NLP solver

Once we have our NLMPC object and our options we can generate an NLP solver through the
nlmpcToForces function:

[coredata, onlinedata] = nlmpcToForces(nlobj,options);

Calling the solver

This will generate our NLP solver named CstrSolver. We can call this solver in two di�erent
ways:

• Through the generic nlmpcmoveForces function which comes with the FORCESPRO
MathWorks Nonlinear MPC Plugin

• Or through the generated MEX function nlmpcmove_CstrSolver (the name of the MEX
is always “nlmpc_<solver name>”). In general it is advantagous from a performance per-
spective to use the MEX over the generic nlmpcmoveForces function.

Calling the NLP solver through the generic nlmpcmoveToForces can be done as in the follow-
ing code-snippet:

onlinedata.md = [10 298.15];
[mv, onlinedata, info] = nlmpcmoveForces(coredata,x,mv,onlinedata);

And the MEX can be called as follows:

[mv, onlinedata, info] = nlmpcmove_CstrSolver(x,mv,onlinedata);

Results

The NLP solver generated through the above code-snippets were applied in a simulation for
200 seconds. As can be seen in the plots Figure 6.1, Figure 6.2 and Figure 6.3 the generated
solver succeeds in controlling the CSTR reactor with a very fast solvetime while the output
stays close to the reference.
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Figure 6.1: Cost as a function of time.

Figure 6.2: Solve time as a function of simulation time.
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Figure 6.3: Concentration of 𝐴 as a function of simulation time.

6.6.2 Lane following using the FORCESPRO nlmpc block in Simulink

In this example, the use of the nlmpc plugin in Simulink is described. The example consists
in making a vehicle follow a central line while keeping a user-specified velocity.
You can find the code of this example to try it out for yourself in the examples/
matlab/mpc-toolbox-plugin/nonlinearModels/lane_following folder that comes with
your FORCESPRO client.

Create an NLMPC object

An nlmpc object with measured and unmeasured disturance is first created.

nlobj = nlmpc(7,3,'MV',[1 2],'MD',3,'UD',4);

The NMPC controller sample time, prediction horizon and control horizon are then specified.

nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 2;

The dynamics are provided as a function name.

nlobj.Model.StateFcn = 'LaneFollowingStateFcn';

The output variables returned by LaneFollowingOutputFcn are the longitudinal velocity, the
lateral deviation and the sum of the yaw angle and yaw angle output disturbance

nlobj.Model.OutputFcn = 'LaneFollowingOutputFcn';
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Bound constraints are set on the manipulated (input) variables.

nlobj.MV(1).Min = -3; % Maximum acceleration 3 m/s^2
nlobj.MV(1).Max = 3; % Minimum acceleration -3 m/s^2
nlobj.MV(2).Min = -1.13; % Minimum steering angle -65
nlobj.MV(2).Max = 1.13; % Maximum steering angle 65

Scaling factors are incorporated on output and manipulated variables to optimize solver per-
formance.

nlobj.OV(1).ScaleFactor = 15; % Typical value of longitudinal velocity
nlobj.OV(2).ScaleFactor = 0.5; % Range for lateral deviation
nlobj.OV(3).ScaleFactor = 0.5; % Range for relative yaw angle
nlobj.MV(1).ScaleFactor = 6; % Range of steering angle
nlobj.MV(2).ScaleFactor = 2.26; % Range of acceleration
nlobj.MD(1).ScaleFactor = 0.2; % Range of Curvature

Weights on outputs and the rates of manipulated variables are set in the NLMPC object ob-
jective function.

nlobj.Weights.OutputVariables = [1 1 0];

%%
% Penalize acceleration change more for smooth driving experience.
nlobj.Weights.ManipulatedVariablesRate = [0.3 0.1];

A nonlinear interior-point FORCESPRO solver is generated from a customizable options struc-
ture.

options = nlmpcToForcesOptions();
% Set solver name
options.SolverName = 'LaneFollowSolver';
% Choose solver type 'InteriorPoint' or 'SQP'
options.SolverType = 'InteriorPoint';
% x0 and u0 are used to create a primal initial guess
options.x0 = x0;
options.mv0 = u0;
tm = tic;
[coredata, onlinedata] = nlmpcToForces(nlobj,options);
tBuild = toc(tm);

The FORCESPRO NLMPC Simulink block can then be used seamlessly. It is available in the
Simulink Library Browser in the Model Predictive Control Toolbox section, as shown in Figure
Figure 6.4.
In order to run the nonlinear interior-point solver, the coredata structure returned by nlm-
pcToForces must be provided in the block mask, as shown in Figure Figure 6.5.
The Simulink model can finally be run using the sim command.

sim('LaneFollowingNMPC')

Results are shown in Figures Figure 6.6 and Figure 6.7.
Simulink Coder (R) enables users to generate an executable from the FORCESPRO NLMPC
block, so that it can be deployed for real-time applications.

6.6.3 Deploying the Lane Following Model on Speedgoat

The lane following model in Figure Figure 6.8 can be easily deployed on Speedgoat platforms
by means of the code below.
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Figure 6.4: FORCESPRO NMPC block.

Figure 6.5: FORCESPRO NMPC block mask.

Figure 6.6: Vehicle lateral deviation.
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Figure 6.7: Vehicle velocity.

% Choose Speedgoat x86 platform to run FORCESPRO solver
options.ForcesTargetPlatform = 'Speedgoat-x86';
% x0 and u0 are used to create a primal initial guess
options.x0 = x0;
options.mv0 = u0;
% Generate FORCESPRO solver
tm = tic;
[coredata, onlinedata] = nlmpcToForces(nlobj,options);
tBuild = toc(tm);

%%
% Start code generation for Speedgoat x86
mdl = 'LaneFollowingNMPC_Speedgoat_x86';
open_system(mdl); % Open Simulink(R) Model
load_system(mdl); % Load Simulink(R) Model
rtwbuild(mdl); % Start Code Generation

% Deploy application from the start
tg = slrt;
if(~strcmpi(tg.Application, 'loader'))

tg.unload();
end
tg.load(mdl);

% Execute application
tg.start();
while(strcmpi(tg.Status, 'running'))

pause(Ts);
end
scope1 = tg.getscope(1);
scope2 = tg.getscope(2);
scope3 = tg.getscope(3);

All the files necessary to run this example can be downloaded here.
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Figure 6.8: Simulink Real-Time Lane Following model for Speedgoat deployment.
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Chapter 7

Low-level interface

FORCESPRO supports designing solvers and controllers via MATLAB and Python scripts. When
using the MATLAB client, a Simulink block is always created such that you can plug your
advanced formulation directly into your simulation models, or download it to a real-time target
platform.
The low-level interface gives advanced optimization users the full flexibility when designing
custom optimization solvers and MPC controllers based on non-standard formulations.
This interface is provided with all variants of FORCESPRO, starting with Variant S.

7.1 Supported problem class

The FORCESPRO low-level interface supports the class of convex multistage quadratically
constrained programs (QCQPs) of the form

minimize
𝑁∑︁
𝑖=1

1

2
𝑧⊤𝑖 𝐻𝑖𝑧𝑖 + 𝑓⊤

𝑖 𝑧𝑖 (separable objective)

subject to 𝐷1𝑧1 = 𝑐1 (initial equality)
𝐶𝑖−1𝑧𝑖−1 + 𝐷𝑖𝑧𝑖 = 𝑐𝑖 (inter-stage equality)
𝑧𝑖 ≤ 𝑧𝑖 (lower bound)
𝑧𝑖 ≤ 𝑧𝑖 (upper bound)
𝐴𝑖𝑧𝑖 ≤ 𝑏𝑖 (polytopic inequalities)
𝑧⊤𝑖 𝑄𝑖,𝑘𝑧𝑖 + 𝐿⊤

𝑖,𝑘𝑧𝑖 ≤ 𝑟𝑖,𝑘 (quadratic inequalities)

for 𝑖 = 1, ..., 𝑁 and 𝑘 = 1, ...,𝑀 . To obtain a solver for this optimization program using the
FORCESPRO client, you need to define all data in the problem, that is the matrices 𝐻𝑖, 𝐴𝑖,
𝑄𝑖,𝑗 , 𝐷𝑖, 𝐶𝑖 and the vectors 𝑧𝑖, 𝑧𝑖, 𝑏𝑖, 𝐿𝑖,𝑘 , 𝑟𝑖,𝑘 , 𝑐𝑖, in a MATLAB struct or Python dictionary, along
with the corresponding dimensions. The following steps will take you through this process.
Importantly, the matrices 𝐻𝑖 and 𝑄𝑖,𝑗 should all be positive definite.

Note: FORCESPRO supports all problem data to be parametric, i.e. to be unknown at code
generation time. Read Section 11 to learn how to use parameters correctly.

In the following, we describe how to model a problem of the above form with FORCESPRO.
First make sure that the FORCESPRO client is on the MATLAB/Python path. See Section 3 for
more details on how to set up the MATLAB client and Section 3.3.
After the PYTHONPATH has been appropriately set up to include your FORCESPRO client
directory (see Section 3.3.3), Python users have to import the FORCESPRO module:
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import forcespro

7.2 Multistage struct

First, an empty struct/class has to be initialized, which contains all fields needed and initialises
matrices and vectors to empty matrices. The command
Matlab
Python

stages = MultistageProblem(N);

stages = forcespro.MultistagePoblem(N)

creates such an empty structure/class of length 𝑁 . Once this structure/class has been created,
the corresponding matrices, vectors and dimensions can be set for each element of stages.

7.3 Dimensions

In order to define the dimensions of the stage variables 𝑧𝑖, the number of lower and upper
bounds, the number of polytopic inequality constraints and the number of quadratic con-
straints use the following fields:
Matlab
Python

stages(i).dims.n = ...; % length of stage variable zi
stages(i).dims.r = ...; % number of equality constraints
stages(i).dims.l = ...; % number of lower bounds
stages(i).dims.u = ...; % number of upper bounds
stages(i).dims.p = ...; % number of polytopic constraints
stages(i).dims.q = ...; % number of quadratic constraints

stages.dims[ i ]['n'] = ... # length of stage variable zi
stages.dims[ i ]['r'] = ... # number of equality constraints
stages.dims[ i ]['l'] = ... # number of lower bounds
stages.dims[ i ]['u'] = ... # number of upper bounds
stages.dims[ i ]['p'] = ... # number of polytopic constraints
stages.dims[ i ]['q'] = ... # number of quadratic constraints

7.4 Cost function

The cost function is, for each stage, defined by the matrix 𝐻𝑖 and the vector 𝑓𝑖. These can be
set by
Matlab
Python

stages(i).cost.H = ...; % Hessian
stages(i).cost.f = ...; % linear term
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stages.cost[i]['H'] = ... # Hessian
stages.cost[i]['f'] = ... # linear term

Note: whenever one of these terms is zero, you have to set them to zero (otherwise the default
of an empty matrix is assumed, which is di�erent from a zero matrix).

7.5 Equality constraints

The equality constraints for each stage, which are given by the matrices 𝐶𝑖, 𝐷𝑖 and the vector
𝑐𝑖, have to be provided in the following form:
Matlab
Python

stages(i).eq.C = ...;
stages(i).eq.c = ...;
stages(i).eq.D = ...;

stages.eq[ i ]['C'] = ...
stages.eq[ i ]['c'] = ...
stages.eq[ i ]['D'] = ...

7.6 Lower and upper bounds

Lower and upper bounds have to be set in sparse format, i.e. an index vector lbIdx/ubIdx that
defines the elements of the stage variable 𝑧𝑖 has to be provided, along with the corresponding
upper/lower bound lb/ub:
Matlab
Python

stages(i).ineq.b.lbidx = ...; % index vector for lower bounds
stages(i).ineq.b.lb = ...; % lower bounds
stages(i).ineq.b.ubidx = ...; % index vector for upper bounds
stages(i).ineq.b.ub = ...; % upper bounds

stages.ineq[ i ]['b']['lbidx'] = ... # index vector for lower bounds
stages.ineq[ i ]['b']['lb'] = ... # lower bounds
stages.ineq[ i ]['b']['ubidx'] = ... # index vector for upper bounds
stages.ineq[ i ]['b']['ub'] = ... # upper bounds

Both lb and lbIdx must have length stages(i).dims.l / stages.dims[ i ][‘l’], and both ub and
ubIdx must have length stages(i).dims.u / stages.dims[ i ][‘u’].

7.7 Polytopic constraints

In order to define the inequality 𝐴𝑖𝑧𝑖 ≤ 𝑏𝑖, use
Matlab
Python
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stages(i).ineq.p.A = ...; % Jacobian of linear inequality
stages(i).ineq.p.b = ...; % RHS of linear inequality

stages.ineq[ i ]['A'] = ... # Jacobian of linear inequality
stages.ineq[ i ]['b'] = ... # RHS of linear inequality

The matrix A must have stages(i).dims.p / stages.dims[ i ][‘p’] rows and stages(i).dims.n /
stages.dims[ i ][‘n’] columns. The vector b must have stages(i).dims.p / stages.dims[ i ][‘p’]
rows.

7.8 Quadratic constraints

Similar to lower and upper bounds, quadratic constraints are given in sparse form by means of
an index vector, which determines on which variables the corresponding quadratic constraint
acts.
Matlab
Python

stages(i).ineq.q.idx = { idx1, idx2, ...}; % index vectors
stages(i).ineq.q.Q = { Q1, Q2, ...}; % Hessians
stages(i).ineq.q.l = { L1, L2, ...}; % linear terms
stages(i).ineq.q.r = [ r1; r2; ... ]; % RHSs

stages.ineq[ i ]['q']['idx'] = ... # index vectors
stages.ineq[ i ]['q']['Q'] = ... # Hessians
stages.ineq[ i ]['q']['l'] = ... # linear terms
stages.ineq[ i ]['q']['r'] = ... # RHSs

If the index vector idx1 has length 𝑚1, then the matrix Q must be square and of size 𝑚1 ×𝑚1,
the column vector l1 must be of size 𝑚1 and 𝑟1 is a scalar. Of course this dimension rules apply
to all further quadratic constraints that might be present. Note that 𝐿1, 𝐿2 etc. are column
vectors in MATLAB!
Since multiple quadratic constraints can be present per stage, in MATLAB we make use of
the cell notation for the Hessian, linear terms, and index vectors. In Python we make use of
Python object arrays for the Hessians, linear terms, and index vectors.

7.8.1 Example

To express the two quadratic constraints

𝑧23,3 + 2𝑧23,5 − 𝑧3,5 ≤ 3

5𝑧23,1 ≤ 1

on the third stage variable, use the code
Matlab
Python

stages(3).ineq.q.idx = { [3 5], [1] } % index vectors
stages(3).ineq.q.Q = { [1 0; 0 2], [5] }; % Hessians
stages(3).ineq.q.l = { [0; -1], [0] }; % linear terms
stages(3).ineq.q.r = [ 3; 1 ]; % RHSs
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stages.ineq[3-1]['q']['idx'] = np.zeros((2,), dtype=object) # index vectors
stages.ineq[3-1]['q']['idx'][0] = np.array([3,5])
stages.ineq[3-1]['q']['idx'][1] = np.array([1])
stages.ineq[3-1]['q']['Q'] = np.zeros((2,), dtype=object) # Hessians
stages.ineq[3-1]['q']['Q'][0] = np.array([1.0 0],[0 2.0])
stages.ineq[3-1]['q']['Q'][1] = np.array([5])
stages.ineq[3-1]['q']['l'] = np.zeros((2,), dtype=object) # linear terms
stages.ineq[3-1]['q']['l'][0] = np.array([0], [-1])
stages.ineq[3-1]['q']['l'][1] = np.array([0])
stages.ineq[3-1]['q']['r'] = np.array([3],[1]) # RHSs

7.9 Binary constraints

To declare binary variables, you can use the bidx field of the stages struct or object. For exam-
ple, the following code declares variables 3 and 7 of stage 1 to be binary:
Matlab
Python

stages(1).bidx = [3 7]

stages.bidx[0] = np.array([3, 7])

That’s it! You can now generate a solver that will take into account the binary constraints on
these variables. If binary variables are declared, FORCESPRO will add a branch-and-bound
procedure to the standard convex solver it generates.

7.10 Declaring Solver Outputs

FORCESPRO gives you full control over the part of the solution that should be outputted by
the solver. It is also possible to obtain the Lagrange multipliers of certain constraints. To define
a standard output as a slice of the primal solution vector, use the function
Matlab
Python

output = newOutput(name, maps2stage, idxWithinStage)

stages.newOutput(name, maps2stage, idxWithinStage)

where name is the name you give to the output (you will need this to read it after calling the
solver). The index vector (or integer) maps2stage defines to which stage this output maps to.
The last argument, idxWithinStage allows the user to select which indices from the stage
vector should be outputted by the solver.
To define an output as a slice of certain Lagrange multipliers, use the function
Matlab
Python

output = newOutput(name, maps2stage, idxWithinStage, maps2const)

stages.newOutput(name, maps2stage, idxWithinStage, maps2const)
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where the remaining argument maps2const specifies the constraint associated with the La-
grange multipliers being requested.

Table 7.1: Possible string values for argument maps2const
maps2const Constraint
r Equalities
u Upper bounds
l Lower bounds
p Polytopic bounds

7.10.1 Example

To define an output to be the first two elements of the primal solution vector, use the following
command:
Matlab
Python

output1 = newOutput('u0', 1, 1:2)

stages.newOutput('u0', 1, range(1,3))

To define an output to be the first and third indices of the Lagrange multipliers for the equality
constraints of the second stage, use the following command:
Matlab
Python

output2 = newOutput('dual_eq0', 2, [1 3], 'r')

stages.newOutput('dual_eq0', 2, [1,3], 'r')

7.11 Generating the solver

After the optimization problem has been formulated into a structure stages, an optimized
solver can be generated. To do so, the solver requires a name and a number of solver options,
as described in Section 14.
Matlab
Python

codeoptions = getOptions('solver name');
generateCode(stages, params, codeoptions, outputs);

options = forcespro.CodeOptions('solver_name')
stages.codeoptions = options
stages.generateCode('user_id')

7.12 Calling the generated low-level solver

After solver generation has completed, the solver itself (as a compiled library) as well as several
interfacing files will become available in your working directory. These files are named accord-
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ing to what you named your solver; in the following we assume “SOLVER_NAME”. Calling the
solver from MATLAB or Python is then as simple as:
Matlab
Python

problem = {} % a struct of solver parameters
SOLVER_NAME(problem)

import SOLVER_NAME_py # notice the _py suffix
problem = {} # a dictionary of solver parameters
SOLVER_NAME_py.SOLVER_NAME_solve(problem)

Note: Don’t give your solver the same name as the script you are calling it from. Doing
so will overwrite your calling script with the solver interface. For example, in a script named
test_problem.m, choose a name such as test_solver instead of test_problem.

Note: The high-level Python interface provides more convenient access to solvers generated
using the high-level interface. This method of calling a solver is only available for solvers gen-
erated through the low-level interface, and high-level solvers can only be called from Python
through the means described in the high-level interface documentation.
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Chapter 8

High-level Interface

The FORCESPRO high-level interface gives optimization users a familiar easy-to-use way to
define an optimization problem. The interface also gives the advanced user full flexibility when
importing external C-coded functions to evaluate the quantities involved in the optimization
problem.
This interface is provided with Variant L and partially with Variant M of FORCESPRO.

Important: Starting with FORCESPRO 1.8.0, the solver generated from the high-level inter-
face supports nonlinear and convex decision making problems with integer variables.

Note: The high-level Python interface expects 0-based indices in the model formulation,
such as for the indices in lbidx, ubidx, hlidx, huidx, xinitidx and xfinalidx, as is usual in Python
programs. Note that this is contrary to the low-level interface, which requires 1-based indices
for these fields.

8.1 Supported problems

8.1.1 Canonical problem for discrete-time dynamics

The FORCES NLP solver solves (potentially) non-convex, finite-time nonlinear optimal control
problems with horizon length 𝑁 of the form:

minimize
𝑁−1∑︁
𝑘=1

𝑓𝑘(𝑧𝑘, 𝑝𝑘) (separable objective)

subject to 𝑧1(ℐ) = 𝑧init (initial equality)
𝐸𝑘𝑧𝑘+1 = 𝑐𝑘(𝑧𝑘, 𝑝𝑘) (inter-stage equality)
𝑧𝑁 (𝒩 ) = 𝑧final (final equality)
𝑧𝑘 ≤ 𝑧𝑘 ≤ 𝑧𝑘 (upper-lower bounds)
𝐹𝑘𝑧𝑘 ∈ [𝑧𝑘, 𝑧𝑘] ∩ Z (integer variables)
ℎ𝑘 ≤ ℎ𝑘(𝑧𝑘, 𝑝𝑘) ≤ ℎ̄𝑘 (nonlinear constraints)

for 𝑘 = 1, . . . , 𝑁 , where 𝑧𝑘 ∈ R𝑛𝑘 are the optimization variables, for example a collection of
inputs, states or outputs in an MPC problem; 𝑝𝑘 ∈ R𝑙𝑘 are real-time data, which are not nec-
essarily present in all problems; the functions 𝑓𝑘 : R𝑛𝑘 × R𝑙𝑘 → R are stage cost functions; the
functions 𝑐𝑘 : R𝑛𝑘 ×R𝑙𝑘 → R𝑤𝑘 represents (potentially nonlinear) equality constraints, such as a

69



FORCESPRO User Manual

state transition function; the matrices 𝐸𝑘 are used to couple variables from the (𝑘+1)-th stage
to those of stage 𝑘 through the function 𝑐𝑘 ; and the functions ℎ𝑘 : R𝑛𝑘 ×R𝑙𝑘 → R𝑚𝑘 are used to
express potentially nonlinear, non-convex inequality constraints. The index sets ℐ and 𝒩 are
used to determine which variables are fixed to initial and final values, respectively. The initial
and final values 𝑧init and 𝑧final can also be changed in real-time. At every stage 𝑘, the matrix 𝐹𝑘

is a selection matrix that picks some coordinates in vector 𝑧𝑘 .
All real-time data is coloured in red. Additionally, when integer variables are modelled, they
need to be declared as real-time parameters. See Section Mixed-integer nonlinear solver.
To obtain a solver for this optimization problem using the FORCESPRO client, you need to
define all functions involved (𝑓𝑘, 𝑐𝑘, ℎ𝑘) along with the corresponding dimensions.

8.1.2 Continuous-time dynamics

Instead of having discrete-time dynamics as can be seen in Section 8.1.1, we also support using
continuous-time dynamics of the form:

�̇� = 𝑓(𝑥, 𝑢, 𝑝)

and then discretizing this equation by one of the standard integration methods. See Section
8.2.4 for more details.

8.1.3 Other variants

Not all elements in Section 8.1.1 have to be necessarily present. Possible variants include prob-
lems:

• where all functions are fixed at code generation time and do not need extra real-time
data 𝑝;

• with no lower (upper) bounds for variable 𝑧𝑘,𝑖, then 𝑧𝑖 ≡ −∞(𝑧𝑖 ≡ +∞);
• without nonlinear inequalities ℎ;
• with 𝑁 = 1 (single stage problem), then the inter-stage equality can be omitted;
• that optimize over the initial value 𝑧init and do not include the initial equality;
• that optimize over the final value 𝑧final final and do not include the final equality.
• mixed-integer nonlinear programs, where some variables are declared as integers. See

Section Mixed-integer nonlinear solver for more information about the MINLP solver.

8.1.4 Function evaluations

The FORCES NLP solver requires external functions to evaluate:
• the cost function terms 𝑓𝑘(𝑧𝑘) and their gradients ∇𝑓𝑘(𝑧𝑘),
• the dynamics 𝑐𝑘(𝑧𝑘) and their Jacobians ∇𝑐𝑘(𝑧𝑘), and
• the inequality consraints ℎ𝑘(𝑧𝑘) and their Jacobians ∇ℎ𝑘(𝑧𝑘).

The FORCESPRO code generator supports the following ways of supplying these functions:
1. Automatic C-code generation of these functions from MATLAB using the automatic di�er-
entiation (AD) tool CasADi. This happens automatically in the background, as long as CasADi is
found on the system. This process is hidden from the user, only standard MATLAB commands
are needed to define the necessary functions. This is the recommended way of getting started
with FORCES NLP. See Section 8.2 to learn how to use this approach.
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2. C-functions (source files). These can be hand-coded, or generated by any automatic dif-
ferentiation tool. See Section 8.5 for details on how to provide own function evaluations and
derivatives to FORCESPRO.

8.2 Expressing the optimization problem in code

When solving nonlinear programs of the type in Section 8.1.1, FORCES requires the functions
𝑓, 𝑐, ℎ and their derivatives (Jacobians) to be evaluated in each iteration. There are two ways
for accomplishing this: either implement all function evaluations in C by some other method
(by hand or by another automatic di�erentiation tool), or use our integration of FORCES with
CasADi, an open-source package for generating derivatives. This is the easiest option to quickly
get started with solving NLPs, and it generates e�cient code. However, if you prefer other AD
tools, see Section 8.5 to learn how to provide your own derivatives to FORCES NLP solvers.
This section will describe the CasADi-based approach in detail, using either the MATLAB or
the Python client of FORCESPRO. Please note that even though both the MATLAB and the
Python client are intended to behave largely identical, there are some di�erences between
the two clients. For details, refer to Differences between the MATLAB and the Python client.

8.2.1 Model Initialization

Model Initialization in Matlab

In the MATLAB high-level interface, the formulation of the optimization problem is given
through a simple structure array. In the following, we will describe the problem in such an
array named model. It is advisable to zero-initialize this variable at the beginning of your script
such that no values set in previous iterations of your script interfere with this run:

model = {}

Model Initialization in Python

In the high-level Python interface, optimization problems are described through objects of
di�erent types, depending on the problem. The following classes are available:

• SymbolicModel - Allows you to describe your optimization problem using regular Python
functions. These functions will be evaluated symbolically by CasADi to create optimized
C code. Note that this model is meant to be used for nonlinear models. If you wish
to express a convex model symbolically, consider using the ConvexSymbolicModel or
forcing generation of a nonconvex solver by seting the option forcenonconvex to True.

• ExternalFunctionModel - Enables more flexibility in describing nonlinear problems by
allowing any external function to be used as objective function and constraints. This
requires C code or already compiled code (object files or shared libraries) from any lan-
guage. The approach using external function evaluations for your objective function and
constraints is described in External function evaluations in C, including the required call
signature of the callback function.

• ConvexSymbolicModel - FORCESPRO can generate di�erent solvers for convex prob-
lems.

Whichever model you choose, it can be initialized with no arguments, or with a single argu-
ment denoting the number of stages 𝑁 in the problem:

import forcespro.nlp
model = forcespro.nlp.SymbolicModel(50)
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Note that most symbolic problem descriptions will also require the Numpy and CasADi pack-
ages, so it is a good idea to import them at the beginning:

import numpy as np
import casadi

8.2.2 Dimensions

In order to define the dimensions of the stage variables 𝑧𝑖, the number of equality and inequal-
ity constraints and the number of real-time parameters use the following fields (properties) in
the client:
Matlab
Python

model.N = 50; % length of multistage problem
model.nvar = 6; % number of stage variables
model.neq = 4; % number of equality constraints
model.nh = 2; % number of nonlinear inequality constraints
model.npar = 0; % number of runtime parameters

model.N = 50 # not required if already specified in initializer
model.nvar = 6 # number of stage variables
model.neq = 4 # number of equality constraints
model.nh = 2 # number of nonlinear inequality constraints
model.npar = 0 # number of runtime parameters

If the dimensions vary for di�erent stages use arrays of length 𝑁 . See Section 8.2.7 for an
example.

8.2.3 Objective

The high-level interface allows you to define the objective function using a handle to a MATLAB
or Python function that evaluates the objective. This function is called with the variables of
one stage as its first argument, i.e. a vector of model.nvar entries. FORCESPRO will process the
given function symbolically and generate the necessary C code to be included in the solver.
Matlab
Python

model.objective = @eval_obj; % handle to objective function

model.objective = eval_obj # eval_obj is a Python function

For instance, the function could be:
Matlab
Python

function f = eval_obj ( z )
F = z(1);
s = z(2);
y = z(4);
f = -100*y + 0.1*F^2 + 0.01* s^2;

end
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def eval_obj(z):
F = z[0]
s = z[1]
y = z[3]
return -100*y + 0.1*F**2 + 0.01*s**2

If the cost function varies for di�erent stages use a cell array of function handles of length 𝑁
in MATLAB, or a list of function handles in Python. See Section 8.2.7 for an example.

Note: Python and MATLAB use di�erent indexing bases. The first element of any variable has
index 1 in MATLAB, whereas it is accessed at o�set 0 in Python!

The objective evaluation function can optionally accept an additional argument p which serves
as a run-time parameter. In order to be able to change the terms in the cost function during
runtime, one can define the objective function as:
Matlab
Python

function f = eval_obj ( z, p )
F = z(1);
s = z(2);
y = z(4);
f = -100*y + p(1)*F^2 + p(2)* s^2;

end

def eval_obj(z, p):
F = z[0]
s = z[1]
y = z[3]
return -100*y + p[0]*F**2 + p[1]*s**2

The length of this additional parameter vector in each stage is given by model.npar.

8.2.4 Equalities

Discrete-time

For discrete-time dynamics, one can define a handle to a function evaluating 𝑐 as shown
below. The selection matrix 𝐸 that determines which variables are a�ected by the inter-stage
equality must also be filled. For performance reasons, it is recommended to order variables
such that the selection matrix has the following structure:
Matlab
Python

model.eq = @eval_dynamics; % handle to inter-stage function
model.E = [zeros(4,2), eye(4)]; % selection matrix

model.eq = eval_dynamics # handle to inter-stage function
model.E = np.concatenate([np.zeros((4, 2)), np.eye(4)], axis=1) # selection matrix

If the equality constraint function varies for di�erent stages use a cell array (or list in Python)
of function handles of length 𝑁 − 1, and similarly for 𝐸𝑘 . See Section 8.2.7 for an example.
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Continuous-time

For continuous-time dynamics, FORCESPRO requires you to describe the dynamics of the
system in the following form:

�̇� = 𝑓(𝑥, 𝑢, 𝑝)

where 𝑥 are the states of the system, 𝑢 are the inputs and 𝑝 a vector of parameters, e.g. the
mass or intertia. The selection matrix 𝐸 determines which components of the stage variable
𝑧𝑖 are to be considered state 𝑥 or input 𝑢 in this representation.
For example, let’s assume that the system to be controlled has the dynamics:

�̇� = 𝑝1𝑥1𝑥2 + 𝑝2𝑢

In order to descretize the system for use with FORCESPRO we have to:
1. Implement the continuous-time dynamics as a function:

Matlab
Python

function xdot = continous_dynamics(x, u, p)
xdot = p(1)*x(1)*x(2) + p(2)*u;

end

def continuous_dynamics(x, u, p):
return p[0]*x[0]*x[1] + p[1]*u[0]

Note that in general the parameter vector p can be omitted if there are no parameters. You
can also implement short functions as anonymous function handles:
Matlab
Python

continous_dynamics_anonymous = @(x,u,p) p(1)*x(1)*x(2) + p(2)*u;

continuous_dynamics_anonymous = lambda x, u, p: p[0]*x[0]*x[1] + p[1]*u[0]

2. Tell FORCESPRO that you are using continuous-time dynamics by setting the
continuous_dynamics field of the model to a function handle to one of the functions above:
Matlab
Python

model.continuous_dynamics = @continuous_dynamics;

model.continuous_dynamics = continuous_dynamics

or, if you are using anonymous functions:
Matlab
Python

model.continuous_dynamics = @continuous_dynamics_anonymous;

model.continuous_dynamics = continuous_dynamics_anonymous
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3. Use the selection matrix 𝐸 to link the stage variables 𝑧𝑖 with the states 𝑥 and inputs 𝑢 of the
continuous dynamics function:
Matlab
Python

model.E = [zeros(2, 1), eye(2)]

model.E = np.concatenate([np.zeros((2, 1)), np.eye(2)], axis=1)

Components of 𝑧𝑖 are considered as state variables 𝑥 according to the order prescribed by the
selection matrix. If an entire 𝑘-th column of the selection matrix is zero, the 𝑘-th component
of 𝑧𝑖 is not governed by a dynamic equation and thus considered as input 𝑢.

4. Choose one of the integrator functions from the Integrators section (the default is ERK4):
Matlab
Python

codeoptions.nlp.integrator.type = 'ERK2';
codeoptions.nlp.integrator.Ts = 0.1;
codeoptions.nlp.integrator.nodes = 5;

codeoptions.nlp.integrator.type = 'ERK2'
codeoptions.nlp.integrator.Ts = 0.1
codeoptions.nlp.integrator.nodes = 5

where the integrator type is set using the type field of the options struct codeoptions.nlp.
integrator. The field Ts determines the absolute time between two integration intervals,
while nodes defines the number of intermediate integration nodes within that integration
interval. In the example above, we use 5 steps to integrate for 0.1 seconds, i.e. each integration
step covers an interval of 0.02 seconds.

8.2.5 Initial and final conditions

The indices a�ected by the initial and final conditions can be set as follows:
Matlab
Python

model.xinitidx = 3:6; % indices affected by initial condition
model.xfinalidx = 5:6; % indices affected by final condition

model.xinitidx = range(2, 6) # indices affected by the initial condition
model.xfinalidx = range(4, 6) # indices affected by the final condition

Note: Python and MATLAB use di�erent indexing bases. The first variable in a stage has index
1 in MATLAB, whereas it is accessed at o�set 0 in Python! Further note that Python’s range
does not include the upper limit, thus:

list(range(2, 6)) == [2, 3, 4, 5] # does not include upper limit

8.2.6 Inequalities

A function evaluating nonlinear inequalities can be provided in a similar way, for example:
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Matlab
Python

function h = eval_const(z)
x = z(3);
y = z(4);
h = [x^2 + y^2;

(x+2)^2 + (y-2.5)^2 ];
end

def eval_const(z):
x = z[2]
y = z[3]
return np.array([x**2 + y**2;

(x+2)**2 + (y-2.5)**2])

The simple bounds and the nonlinear inequality bounds can have +inf and -inf elements,
but must be the same length as the field nvar and nh, respectively:
Matlab
Python

model.ineq = @eval_const; % handle to nonlinear constraints
model.hu = [9, +inf]; % upper bound for nonlinear constraints
model.hl = [1, 0.95^2]; % lower bound for nonlinear constraints
model.ub = [+5, +1, 0, 3, 2, +pi]; % simple upper bounds
model.lb = [-5, -1, -3, -inf, 0, 0]; % simple lower bounds

model.ineq = eval_const # handle to nonlinear constraints
model.hu = [9, +float('inf')] # upper bound for nonlinear
→˓constraints
model.hl = [1, 0.95**2] # lower bound for nonlinear
→˓constraints
model.ub = [+5, +1, 0, 3, 2, +np.pi] # simple upper bounds
model.lb = [-5, -1, -3, -float('inf'), 0, 0] # simple lower bounds

Note: While the FORCESPRO Python client does not require you to use numpy arrays, we
encourage their use for vector- and matrix-valued properties of the model, as it simplifies
calculations for the user. Therefore, any of the above properties can also be set to Numpy
arrays instead of lists. If lists are given, these are converted to Numpy arrays internally.

If the constraints vary for di�erent stages, use cell arrays of length 𝑁 for any of the quantities
defined above. See Varying dimensions, parameters, constraints, or functions section for an
example.
Bounds model.lb and model.ub can be made parametric by leaving said fields empty and
using the model.lbidx and model.ubidx fields to indicate on which variables lower and up-
per bounds are present. The numerical values will then be expected at runtime. For example,
to set parametric lower bounds on states 1 and 2, and parametric upper bounds on states 2
and 3, use:
Matlab
Python

% Lower bounds are parametric (indices not mentioned here are -inf)
model.lbidx = [1 2]';

% Upper bounds are parametric (indices not mentioned here are +inf)

(continues on next page)
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(continued from previous page)
model.ubidx = [2 3]';

% lb and ub have to be empty when using parametric bounds
model.lb = [];
model.ub = [];

# Lower bounds are parametric (indices not mentioned here are -inf)
model.lbidx = [0, 1]

# Upper bounds are parametric (indices not mentioned here are +inf)
model.ubidx = [1, 2]

# There is no need to specify model.lb or model.ub to empty lists if
# model.lbidx or model.ubidx are set, and any non-empty value is disallowed.

and then specify the exact values at runtime through the fields lb01–lbN and ub01–ubN:
Matlab
Python

% Specify lower bounds
problem.lb01 = [0 0]';
problem.lb02 = [0 0]';
% ...

% Specify upper bounds
problem.ub01 = [3 2]';
problem.ub02 = [3 2]';
% ...

# Specify lower bounds
problem["lb01"] = [0, 0]
problem["lb02"] = [0, 0]

# Specify upper bounds
problem["ub01"] = [3, 2]
problem["ub02"] = [3, 2]

Tip: One could use problem.(sprintf('lb%02u',i)) in an i-indexed loop to set the para-
metric bounds more easily in the MATLAB client. Similarly, the parametric bounds for the
stages can be set using problem["{:02d}".format(i+1)] in Python. Alternatively, consider
using the option stack_parambounds, described below.

If the model.lbidx and model.ubidx fields vary for di�erent stages use cell arrays of length
𝑁 . From Release 3.0.1, the parametric bounds can be stacked on one same array covering
all stages. To enable this behaviour, users need to set the following code-generation option:
Matlab
Python

codeoptions.nlp.stack_parambounds = 1;

codeoptions.nlp.stack_parambounds = True

This option is e�ective for both the PDIP_NLP and SQP_NLP solve methods and works with
bounds on variables and inequalities. At run-time, users can then write
Matlab

Chapter 8. High-level Interface 77



FORCESPRO User Manual

Python

% Lower and upper bounds stacked over all stages
problem.lb = [0 0 0 0 ...];
problem.ub = [3 2 3 2 ...];

# Lower and upper bounds stacked over all stages
problem["lb"] = [0, 0, 0, 0, ...]
problem["ub"] = [3, 2, 3, 2, ...]

Alternatively, if you want to use the same bounds across all stages:
Matlab
Python

problem.lb = repmat([0, 0], 1, model.N);
problem.ub = repmat([3, 2], 1, model.N);

problem["lb"] = np.tile([0, 0], (model.N,))
problem["ub"] = np.tile([3, 2], (model.N,))

8.2.7 Variations

Varying dimensions, parameters, constraints, or functions

The example described above has the same dimensions, bounds and functions for the whole
horizon. One can define varying dimensions using arrays and varying bounds and functions
using MATLAB cell arrays or Python lists. For instance, to remove the first and second variables
from the last stage one could write the following:
Matlab
Python

for i = 1:model.N-1
model.nvar(i) = 6;
model.objective{i} = @(z) -100*z(4) + 0.1*z(1)^2 + 0.01*z(2)^2;
model.lb{i} = [-5, -1, -3, 0, 0, 0];
model.ub{i} = [+5 , +1, 0, 3, 2, +pi];
if i < model.N-1
model.E{i} = [zeros(4, 2), eye(4)];

else
model.E{i} = eye(4);

end
end

model.nvar(nlp.N) = 4;
model.objective{nlp.N} = @(z) -100*z(2);
model.lb{nlp.N} = [-3, 0, 0, 0];
model.ub{nlp.N} = [ 0, 3, 2, +pi];

model = forcespro.nlp.SymbolicModel(50) # to set values stage-wise, the model
→˓must be initialized this way

for i in range(0:model.N-1):
model.nvar[i] = 6
model.objective[i] = lambda z: -100*z[3] + 0.1*z[0]**2 + 0.01*z[1]**2
model.lb[i] = [-5, -1, -3, 0, 0, 0]
model.ub[i] = [+5 , +1, 0, 3, 2, +np.pi]

(continues on next page)
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(continued from previous page)
if i < model.N-2:
model.E[i] = np.concatenate([np.zeros(4, 2), np.eye(4)], axis=1)

else:
model.E[i] = np.eye(4)

model.nvar[-1] = 4
model.objective[-1] = lambda z: -100*z[1]
model.lb[-1] = [-3, 0, 0, 0]
model.ub[-1] = [ 0, 3, 2, +np.pi]

It is also typical for model predictive control problems (MPC) that only the last stage di�ers
from the others (excluding the initial condition, which is handled separately). Instead of defin-
ing cell arrays as above for all stages, FORCESPRO o�ers the following shorthand notations
that alter the last stage:

• nvarN: number of variables in last stage
• nparN: number of parameters in last stage
• objectiveN: objective function for last stage
• EN: selection matrix 𝐸 for last stage update
• nhN: number of inequalities in last stage
• ineqN: inequalities for last stage

Add any of these fields to the model struct/object to override the default values, which is to
make everything the same along the horizon. For example, to add a terminal cost that is a
factor 10 higher than the stage cost:
Matlab
Python

model.objectiveN = @(z) 10*model.objective(z);

model.objectiveN = lambda z: 10*model.objective(z)

Providing analytic derivatives

The algorithms inside FORCESPRO need the derivatives of the functions describing the ob-
jective, equality and inequality constraints. The code generation engine uses algorithmic dif-
ferentiation (AD) to compute these quantities. Instead, when analytic derivatives are available,
the user can provide them using the fields model.dobjective, model.deq, and model.dineq.
Note that the user must be particularly careful to make sure that the provided functions and
derivatives are consistent, for example:
Matlab
Python

model.objective = @(z) z(3)^2;
model.dobjective = @(z) 2*z(3);

model.objective = lambda z: z[2]**2
model.dobjective = lambda z: 2*z[2]

The code generation system will not check the correctness of the provided derivatives.
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8.3 Generating a solver

In addition to the definition of the NLP, solver generation requires an (optional) set of options
for customization (see the Solver Options section for more information). Using the default
solver options we generate a solver using:
Matlab
Python

% Get the default solver options
codeoptions = getOptions('FORCESNLPsolver');

% Generate solver
FORCES_NLP(model, codeoptions);

# Get the default solver options
options = forcespro.CodeOptions('FORCESNLPsolver')

# Generate solver for previously initialized model
solver = model.generate_solver(options)

As the solver is generated, several files are downloaded into the current working directory of
the calling script, including the compiled solver itself and MATLAB/Python interfaces for calling
it.

Note: In the Python client, generate_solver() returns a solver object. This object can be used
to call the solver. To get a solver object for a previously generated solver in some directory
/path/to/solver, use:

import forcespro.nlp
solver = forcespro.nlp.Solver.from_directory('/path/to/solver')

8.3.1 Declaring outputs

By default, the solver returns the solution vector for all stages as multiple outputs. Alternatively,
the user can pass a third argument to the function FORCES_NLP with an array that specifies
what the solver should output. For instance, to define an output, named u0, to be the first two
elements of the solution vector at stage 1, use the following commands:
Matlab
Python

output1 = newOutput('u0', 1, 1:2);
FORCES_NLP(model, codeoptions, output1);

output_1 = ("u0", 0, [0, 1], "")
model.generate_solver(options, [output_1])

Important: When using the MINLP solver and defining outputs, all integer variables need to
be specified as custom outputs.

The dual variables at the solution returned by FORCES provide useful information on the
problem sensitivity. They can be exported from the nonlinear solver as well by giving the
maps2const field one of the following values:
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• ‘nl_eq_dual’ for the dual variables associated to equality constraints
• ‘nl_lb_var_dual’ for the dual variables associated to lower bounds on variables
• ‘nl_ub_var_dual’ for the dual variables associated to upper bounds on variables
• ‘nl_ip_ineq_dual’ for the dual variables associated to nonlinear inequalities
• ‘nl_ineq_slack’ for the dual variables associated to slacks on nonlinear inequalities.

An example of exporting the marginals associated to nonlinear equalities is shown in the code
snippet below.

outputs(4) = newOutput('dual_eq0', 1:model.N, 1:2, 'nl_eq_dual');

8.4 Calling the solver

After code generation has been successful, one can obtain information about the real-time
data needed to call the generated solver by typing:
Matlab
Python

help FORCESNLPsolver

# Assuming `solver` is the return value of a `model.generate_solver()` call
solver.help()

In Python, a previously generated solver can be loaded as follows:

import forcespro.nlp
solver = forcespro.nlp.Solver.from_directory("/path/to/generated/solver/")
solver.help()

8.4.1 Initial guess

The FORCES NLP solver solves NLPs to local optimality, hence the resulting optimal solution
depends on the initialization of the solver. One can also choose another initialization point
when a better guess is available. The following code sets the initial point to be in the middle
of all bounds:
Matlab
Python

x0i = model.lb +(model.ub - model.lb)/2;
x0 = repmat(x0i', model.N, 1);
problem.x0 = x0;

xi = (model.lb + model.ub) / 2 # assuming lb and ub are numpy arrays
x0 = np.tile(xi, (model.N,))
problem = {"x0": x0}

8.4.2 Initial and final conditions

If there are initial and/or final conditions on the optimization variables, the solver will expect
the corresponding runtime fields:
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Matlab
Python

problem.xinit = model.xinit;
problem.xfinal = model.xfinal;

problem = {"xinit": np.array([1, 2, 3]),
"xfinal": np.array([4, 5, 6])}

Note that the Python client does not allow setting model.xinit or model.xfinal properties, as
those are run-time parameters not needed at solver generation time.

8.4.3 Real-time parameters

Whenever there are any runtime parameters defined in the problem, i.e. the field npar is not
zero, the solver will expect the following field containing the parameters for all the 𝑁 stages
stacked in a single vector:
Matlab
Python

problem.all_parameters = repmat(1.0, model.N, 1);

problem["all_parameters"] = np.tile(1.0, (model.N,))

8.4.4 Tolerances as real-time parameters

From FORCES 2.0 onwards, the NLP solver tolerances can be made real-time parameters,
meaning that they do not need to be set when generating the solver but can be changed at
run-time when calling the generated solver. The code-snippet below shows how to make the
tolerances on the gradient of the Lagrangian, the equalities, the inequalities and the comple-
mentarity condition parametric. Essentially, when the tolerances are declared nonpositive at
code-generatioon, the corresponding run-time parameter is created in the solver.
Matlab
Python

codeoptions.nlp.TolStat = -1; % Tolerance on gradient of Lagrangian
codeoptions.nlp.TolEq = -1; % Tolerance on equality constraints
codeoptions.nlp.TolIneq = -1; % Tolerance on inequality constraints
codeoptions.nlp.TolComp = -1; % Tolerance on complementarity

codeoptions.nlp.TolStat = -1 # Tolerance on gradient of Lagrangian
codeoptions.nlp.TolEq = -1 # Tolerance on equality constraints
codeoptions.nlp.TolIneq = -1 # Tolerance on inequality constraints
codeoptions.nlp.TolComp = -1 # Tolerance on complementarity

Once the tolerance has been declared nonpositive and the solver has been generated, the
corresponding parameter can be set at run-time as follows:
Matlab
Python
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problem.ToleranceStationarity = 1e-1;
problem.ToleranceEqualities = 1e-1;
problem.ToleranceInequalities = 1e-1;
problem.ToleranceComplementarity = 1e-1;

problem["ToleranceStationarity"] = 1e-1
problem["ToleranceEqualities"] = 1e-1
problem["ToleranceInequalities"] = 1e-1
problem["ToleranceComplementarity"] = 1e-1

Tip: We do not recommend changing the tolerance on the complementarity condition since
it is used internally to update the barrier parameter. Hence loosening it may hamper the solver
convergence.

8.4.5 Exitflags and quality of the result

Once all parameters have been populated, the MEX interface of the solver can be used to
invoke it:
Matlab
Python

[output, exitflag, info] = FORCESNLPsolver(problem);

output, exitflag, info = solver.solve(problem)

The possible exitflags are documented in Table 8.1. The exitflag should always be checked
before continuing with program execution to avoid using spurious solutions later in the code.
Check whether the solver has exited without an error before using the solution. For example,
in MATLAB, we suggest to use an assert statement:
Matlab
Python

assert(exitflag == 1, 'Some issue with FORCES solver');

assert exitflag == 1, "Some issue with FORCES solver"
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Table 8.1: Exitflag values
Exitflag Description
1 Local optimal solution found (i.e. the point satisfies the KKT optimality condi-

tions to the requested accuracy).
0 Maximum number of iterations reached. You can examine the value of opti-

mality conditions returned by FORCES to decide whether the point returned is
acceptable.

-4 Wrong number of inequalities input to solver.
-5 Error occured during matrix factorization.
-6 NaN or INF occured during functions evaluations.
-7 The solver could not proceed. Most likely cause is that the problem is infeasi-

ble.Try formulating a problem with slack variables (soft constraints) to avoid this
error.

-8 The internal QP solver could not proceed. This exitflag can only occur when us-
ing the Sequential quadratic programming algorithm. The most likely cause
is that an infeasible QP or a numerical unstable QP was encountered. Try in-
creasing the hessian regularization parameter reg_hessian if this exitflag is
encountered (see SQP specific codeoptions).

-10 NaN or INF occured during evaluation of functions and derivatives. If this occurs
at iteration zero, try changing the initial point. For example, for a cost function
1/
√
𝑥 with an initialization 𝑥0 = 0, this error would occur.

-11 Invalid values in problem parameters.
-100 License error. This typically happens if you are trying to execute code that has

been generated with a Simulation license of FORCESPRO on another machine.
Regenerate the solver using your machine.

8.5 External function evaluations in C

This approach allows the user to integrate existing e�cient C implementations to evaluate the
required functions and their derivatives with respect to the stage variable. This gives the user
full flexibility in defining the optimization problem. In this case, the functions do not neces-
sarily have to be di�erentiable, although the convergence of the algorithm is not guaranteed
if they are not. When following this route the user does not have to provide MATLAB code
to evaluate the objective or constraint functions. However, the user is responsible for making
sure that the provided derivatives and function evaluations are coherent. The FORCES NLP
code generator will not check this.

8.5.1 Interface

Expected function signature

To obtain the necessary information, the FORCES NLP will automatically call a function sup-
plied by the user. This function must have the following signature:

void myfunctions (
double *x, /* primal vars */
double *y, /* eq. constraint multiplers */
double *l, /* ineq . constraint multipliers */
double *p, /* runtime parameters */
double *f, /* objective function ( incremented in this function ) */
double *nabla_f , /* gradient of objective function */
double *c, /* dynamics */
double *nabla_c , /* Jacobian of the dynamics ( column major ) */

(continues on next page)
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(continued from previous page)
double *h, /* inequality constraints */
double *nabla_h , /* Jacobian of inequality constraints ( column major ) */
double *H, /* Hessian ( column major ) */
int stage, /* stage number (0 indexed ) */
int iteration /* Solver iteration count */

)

In the MATLAB client, note that this function must have the same name as the file it is con-
tained in, minus the file extension. In the above example, the function must therefore be
stored in a file named myfunctions.c. Using the Python client, an arbitrary function name
unrelated to the file name can be used.

Custom data structures as parameters

If you have an advanced data structure that holds the user-defined run-time parameters, and
you do not want to serialize it into an array of doubles to use the interface above, you can
invoke the option:

codeoptions.customParams = 1;

This will change the interface of the expected external function to:

void myfunctions (
double *x, /* primal vars */
double *y, /* eq. constraint multiplers */
double *l, /* ineq . constraint multipliers */
void *p, /* runtime parameters */
double *f, /* objective function ( incremented in this function ) */
double *nabla_f , /* gradient of objective function */
double *c, /* dynamics */
double *nabla_c , /* Jacobian of the dynamics ( column major ) */
double *h, /* inequality constraints */
double *nabla_h , /* Jacobian of inequality constraints ( column major ) */
double *H, /* Hessian ( column major ) */
int stage, /* stage number (0 indexed ) */
int iteration /* Solver iteration count */

)

i.e. you can pass arbitrary data structures to your own function by setting the pointer in the
params struct:

myData p; /* define your own parameter structure */
/* ... */ /* fill it with data */

/* Set parameter pointer to your data structure */
mySolver_params params; /* Define solver parameters */
params.customParams = &p;

/* Call solver (assuming everything else is defined) */
mySolver_solv(&params, &output, &info, stdout, &external_func);

Note: Setting customParams to 1 will disable building high-level interfaces. Only C header-
and source files will be generated.

Note: Using a custom parameters struct is currently not supported when using the Python
client.
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8.5.2 Supplying function evaluation information

In MATLAB, to let the code generator know about the path to the C files implementing the
necessary function evaluations use:

model.extfuncs = 'C/myfunctions.c';

As noted above, the MATLAB client derives the function name used for the callback from the
file name; the function must therefore have the same name as the file in which it is contained.
In Python, use a ExternalFunctionModel as follows:

model = forcespro.nlp.ExternalFunctionModel(50)
model.add_auxiliary(["helper_functions.c", "compiled_helper_functions.obj"])
model.set_main_callback("myfunctions.c", funcion="myfunctions")

Herein, the add_auxiliary() method is used to add any helper C source files or object files that
should be compiled and liked against, and the set_main_callback() function is used to define
the path to a C source file or compiled object file, as well as the name of an exported function
that conforms to the call signature given above. This function will be used to evaluate any
nonlinear constraints and the objective function.

8.5.3 Rules for function evaluation code

The contents of the function have to follow certain rules. We will use the following example
to illustrate them:

/* cost */
if (f)
{ /* notice the increment of f */

(*f) += -100*x[3] + 0.1* x[0]*x[0] + 0.01*x [1]*x [1];
}
/* gradient - only nonzero elements have to be filled in */
if ( nabla_f )
{

nabla_f [0] = 0.2*x[0];
nabla_f [1] = 0.02*x[1];
nabla_f [3] = -100;

}

/* eq constr */
if (c)
{

vehicle_dyanmics (x, c);
}
/* jacobian equalities ( column major ) */
if ( nabla_c )
{

vehicle_dyanmics_jacobian (x, nabla_c );
}

/* ineq constr */
if (h)
{

h[0] = x [2]*x[2] + x[3]*x [3];
h[1] = (x[2]+2)*(x[2]+2) + (x[3] -2.5)*(x[3] -2.5);

}
/* jacobian inequalities ( column major )
- only non - zero elements to be filled in */
if ( nabla_h )

(continues on next page)
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(continued from previous page)
{

/* column 3 */
nabla_h [4] = 2*x [2];
nabla_h [5] = 2*x[2] + 4;
/* column 4 */
nabla_h [6] = 2*x [3];
nabla_h [7] = 2*x[3] - 5;

}

Notice that every function evaluation is only carried out if the corresponding pointer is not
null. This is used by the FORCES NLP solver to call the same interface with di�erent pointers
depending on the functions that it requires.

8.5.4 Matrix format

Matrices are assumed to be stored in dense column major format. However, only the non-zero
components need to be populated, as FORCES NLP makes sure that the arrays are initialized
to zero before calling this interface.

8.5.5 Multiple source files

The use of multiple C files is also supported. In the example above, the functions dynamics
and dynamics_jacobian are defined in another file and included as external functions using:

extern void dynamics ( double *x, double *c);
extern void dynamics_jacobian ( double *x, double *J);

In MATLAB, to let the code generator know about the location of these other files use a string
with spaces separating the di�erent files. In Python, use the add_auxiliary() method:
Matlab
Python

codeoptions.nlp.other_srcs = 'C/dynamics.c';

model.add_auxiliary('C/dynamics.c')

8.5.6 Stage-dependent functions

Whenever the cost function in one of the stages is di�erent from the standard cost function
𝑓 , one can make use of the argument stage to evaluate di�erent functions depending on the
stage number. The same applies to all other quantities.

8.6 Mixed-integer nonlinear solver

From FORCESPRO 1.8.0, mixed-integer nonlinear programs (MINLPs) are supported. This
broad class of problems encompasses all nonlinear programs with some integer decision vari-
ables.
This interface is provided with Variant L of FORCESPRO.
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8.6.1 Writing a mixed-integer model

In order to use this feature, the user has to declare lower and upper bounds on all variables
as parametric, as shown in the code below.
Matlab
Python

model.lb = [];
model.ub = [];

model.lbidx = range(0, model.nvar)
model.ubidx = range(0, model.nvar)

The user is then expected to provide lower and upper bounds as run-time parameters. Forces
Pro switches to the MINLP solver as soon as some variables are declared as integers in any
stage. This information can be provided to FORCESPRO via the intidx array at every stage.
An example is shown below.
Matlab
Python

%% Add integer variables to existing nonlinear model
for s = 1:5

model.intidx{s} = [4, 5, 6];
end

# Add integer variables to existing nonlinear model
for s in range(0, 5):

model.intidx[s] = [3, 4, 5]

In the above code snippet, the user declares variables 4, 5 and 6 (3, 4 and 5 in Python’s zero-
based indexing) as integers from stage 1 to 5 (stages 0 to 4 in Python’s zero-based indexing).
The values that can be taken by an integer variable are derived from its lower and upper
bounds. For instance, if the variable lies between -1 and 1, then it can take integer values -1,
0 or 1. If a variable has been declared as integer and does not have lower or upper bounds,
FORCESPRO raises an exception during code generation. Stating that a variable has lower
and upper bounds should be done via the arrays lbidx and ubidx. For instance, in the code
below, variables 1 to 6 (0 to 5 in Python) in stage 1 (0) have lower and upper bounds, which
are expected to be provided at run-time.
Matlab
Python

model.lbidx{1} = 1 : 6;
model.ubidx{1} = 1 : 6;

model.lbidx[0] = range(0, 6)
model.ubidx[0] = range(0, 6)

The FORCESPRO MINLP algorithm is based on the well-known branch-and-bound algorithm
but comes with several customization features which generally help for improving perfor-
mance on some models by enabling the user to provide application specific knowledge into
the search process. At every node of the search tree, the FORCESPRO nonlinear solver is called
in order to compute a solution of a relaxed problem. The generated MINLP solver code can
be customized via the options described in Table 8.2, which can be changed before running
the code generation.
One of the salient features of the MINLP solver is that the branch-and-bound search can be
run in parallel on several threads. Therefore the search is split in two phases. It starts with a
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sequential branch-and-bound and switches to a parallelizable process when the number of
nodes in the queue is su�ciently high. The node selection strategy can be customized in both
phases, as described in Table 8.2.

Table 8.2: FORCESPRO MINLP solver options
Code generation setting Values Default
minlp.int_gap_tol Any value ≥ 0 0.001
minlp.max_num_nodes Any value ≥ 0 10000
minlp.seq_search_strat 'BEST_FIRST', 'BREADTH_FIRST 'DEPTH_FIRST' 'BEST_FIRST'
minlp.par_search_strat 'BEST_FIRST', 'BREADTH_FIRST', 'DEPTH_FIRST' 'BEST_FIRST'
minlp.max_num_threads Any nonnegative value preferably smaller than 8 4
minlp.output_relaxation 0 or 1 0

• The minlp.int_gap_tol setting corresponds to the final optimality tolerance below
which the solver is claimed to have converged. It is the di�erence between the objective
incumbent, which is the best integer feasible solution found so far and the lowest lower
bound. As the node problems are generally not convex, it can be expected to become
negative. FORCESPRO claims convergence to a local minimum only when the integrality
gap is nonnegative and below the tolerance minlp.int_gap_tol.

• The minlp.max_num_nodes setting is the maximum number of nodes which can be
explored during the search.

• The minlp.seq_search_strat setting is the search strategy which is used to select can-
didate nodes during the sequential search phase.

• The minlp.par_search_strat setting is the search strategy which is used to select can-
didate nodes during the parallelizable search phase.

• The minlp.max_num_threads setting is the maximum number of threads allowed for a
parallel search. The actual number of threads on which the branch-and-bound algorithm
can be run can be set as a run-time parameter, as described below.

• The minlp.output_relaxation setting enables users to export the primal outputs of
the root relaxation. With this option set to 1, the server automatically generates one
additional output for every defined output. The name of the root relaxation output is the
name of the output followed by _relax.

Note: The MINLP solver is currently constrained to run on one thread on MacOS, meaning
that minlp.max_num_threads is automatically set to 1 on MacOS.

Important: When generating a MINLP solver for MacOS the thread local feature (codeop-
tions.threadSafeStorage) is automatically set to 0 so if a dynamic library is used for a MINLP
solver in a MacOS environment then one should not run at the same time more than one
solvers linked to that library. A workaround for this would be to use the static library which is
not bound by this restriction.

The FORCESPRO MINLP solver also features settings which can be set at run-time. These are
the following:

• minlp.numThreadsBnB, the number of threads used to parallelize the search. Its default
value is 1, if not provided by the user.

• minlp.solver_timeout, the maximum amount of time allowed for completing the
search. Its default value is 1.0 seconds, if not set by the user.

• minlp.parallelStrategy, the method used for parallelizing the mixed-integer search
(from FORCES-PRO 1.9.0). Value 0 (default) corresponds to a single priority queue shared
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between threads. Value 1 corresponds to having each thread managing its own priority
queue.

8.6.2 Mixed-integer solver customization via user callbacks

For advanced users, the mixed-integer branch-and-bound search can be customized after
the rounding and the branching phases. In the rounding phase, an integer feasible solution
is computed after each relaxed problem solve. The user is allowed to modify the rounded so-
lution according to some modelling requirements and constraints. This can be accomplished
via the postRoundCallback_template.c file provided in the FORCESPRO client. This call-
back is applied at every stage in a loop and updates the relaxed solution stage-wise. It needs
to be provided before code generation, as shown in the following code snippet.
Matlab
Python

%% Add post-rounding callback to existing model
postRndCall = fileread('postRoundCallback_template.c'); % The file name can be
→˓changed by the user
model.minlpPostRounding = postRndCall;

with open('postroundCallback_template.c') as f:
model.minlpPostRounding = f.read()

The branching process can be customized in order to discard some nodes during the search.
To do so, the user is expected to overwrite the file postBranchCallback_template.c and
pass it to FORCESPRO before generating the MINLP solver code.
Matlab
Python

%% Add as post-branching callbacks as you want
postBranchCall_1 = fileread('postBranchCallback_template_1.c');
postBranchCall_2 = fileread('postBranchCallback_template_2.c');
postBranchCall_3 = fileread('postBranchCallback_template_3.c');
model.minlpPostBranching{1} = postBranchCall_1;
model.minlpPostBranching{2} = postBranchCall_2;
model.minlpPostBranching{3} = postBranchCall_3;

# Add as post-branching callbacks as you want
with open('postBranchCallback_template_1.c') as f:

model.minlpPostBranching[0] = f.read()
with open('postBranchCallback_template_2.c') as f:

model.minlpPostBranching[1] = f.read()
with open('postBranchCallback_template_3.c') as f:

model.minlpPostBranching[2] = f.read()

In each of those callbacks, the user is expected to update the lower and upper bounds of
the sons computed during branching given the index of the stage in which the branched
variables lies, the index of this variable inside the stage and the relaxed solution at the parent
node.

8.6.3 Providing a guess for the incumbent

Internally, the mixed-integer branch-and-bound computes an integer feasible solution by
rounding. Moreover, since version 1.9.0, users are allowed to provide an initial guess for the
incumbent. At code-generation, the following options need to be set:
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• minlp.int_guess, which tells whether an integer feasible guess is provided by the user
(value 1). Its default value is 0.

• minlp.int_guess_stage_vars, which specifies the indices of the integer variables that
are user-initialized within one stage (MATLAB based indexing). If minlp.int_guess = 1,
a parameter int_guess needs to be set at every stage. An example can be found there
Mixed-integer nonlinear solver: F8 Crusader aircraft.

Another important related option is minlp.round_root. If set to 1, the solution of the root
relaxation is rounded and set as incumbent if feasible. Its default value is 1. The mixed-integer
solver behaviour di�ers depending on the combinations of options. The di�erent behaviours
are listed below.

• If minlp.int_guess = 0 and minlp.round_root = 1, then the solution of the root re-
laxation is taken as incumbent (if feasible). This is the default behaviour.

• If minlp.int_guess = 1 and minlp.round_root = 0, then the incumbent guess pro-
vided by the user is tested after the root solve. If feasible, it is taken as incumbent. Note
that the user is allowed to provide guesses for a few integers per stage only. In this case,
the other integer variables are rounded to the closest integer.

• If minlp.int_guess = 1 and minlp.round_root = 1, then the rounded solution of the
root relaxation and the user guess are compared. The best integer feasible solution in
terms of primal objective is then taken as incumbent.

This feature is illustrated in Example Mixed-integer nonlinear solver: F8 Crusader aircraft. The
ability of providing an integer guess for the incumbent is a key feature to run the mixed-integer
solver in a receding horizon setting.

8.7 Sequential quadratic programming algorithm

The FORCESPRO real-time sequential quadratic programming (SQP) algorithm allows one
to solve problems of the type specified in the section High-level Interface. The algorithm
iteratively solves a convex quadratic approximations of the (generally non-convex) problem.
Moreover, the solution is stored internally in the solver and used as an initial guess for the next
time the solver is called. This and other features enables the solver to have fast solvetimes
(compared to the interior point method), particularly suitable for MPC applications where the
sampling time or the computational power of the hardware is small.

Important: The SQP algorithm currently only supports a�ne inequalities. This means that all
the inequality functions ℎ𝑘, 𝑘 = 1, ..., 𝑁 from (8.1.1) must be affine functions of the variable 𝑧𝑘
(not necessarily of 𝑝𝑘).

8.7.1 How to generate a SQP solver

To generate a FORCESPRO sequential quadratic programming real-time iteration solver one
sets
Matlab
Python

codeoptions.solvemethod = 'SQP_NLP';

codeoptions.solvemethod = "SQP_NLP"
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(see Generating a solver). In addition to the general code options specified in the previous
section here are some of the important code options one can use to customize the generated
SQP solver.
By default the FORCESPRO SQP solver solves a single convex quadratic approximation. This
accomplishes a fast solvetime compared to a “full” sequential quadratic programming solver
(which solves quadratic approximations to the nonlinear program until a KKT point is reached).
The user might prefer to manually allow the SQP solver to solve multiple quadratic approxi-
mations: By setting
Matlab
Python

codeoptions.sqp_nlp.maxqps = k;

codeoptions.sqp_nlp.maxqps = k

for a positive integer k one allows the solver to solve k quadratic approximations at every call
to the solver. In general, the more quadratic approximations which are solved, the higher the
control performance. The tradeo� is that the solvetime also increases.

8.7.2 The hessian approximation and line search settings

The SQP code generation currently supports two di�erent types of hessian approximations. A
good choice of hessian approximation can often improve the number of iterations required
by the solver and thereby its solvetime. The default option for a SQP solver is the BFGS hessian
approximation. When the objective function of the optimization problem is a least squares
cost it is often benefitial to use the Gauss-Newton hessian approximation instead. To enable
this option one proceeds as specified in the sections Hessian approximation and Gauss-
Newton options. When the Gauss-Newton hessian approximation is chosen one can also
disable the the internal linesearch by setting
Matlab
Python

codeoptions.sqp_nlp.use_line_search = 0;

options.sqp_nlp.use_line_search = False

A linesearch is required to ensure global convergence of an SQP method, but is not needed
in a real-time context when a Gauss-Newton hessian approximation is used.

Note: One cannot disable the line search when using the BFGS hessian approximation.

8.7.3 Controlling the initial guess at run-time

Upon the first call to the generated FORCESPRO SQP solver one needs to specify a primal
initial guess (problem.x0, see also Initial guess). The default behaviour of the FORCESPRO
SQP solver is to use the solution from the previous call as initial guess in every subsequent
call to it. However, one can also manually set an initial guess in subsequent calls to the solver.
Wether a manual initial guess (provided through problem.x0) will be used or the internally
stored solution from the previous call will be used can be controlled by the field problem.
reinitialize of the problem struct which is passed as an argument to the solver when it is
called.
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The reinitialize field can take two values: 0 or 1. For the default usage of the solver
Matlab
Python

problem.reinitialize = 0;

problem["reinitialize"] = False

should be used. This choice results in the solver using the solution from the previous call as
initial guess. This feature is useful when running the real-time iteration scheme because it
ensures that the initial guess is close to the optimal solution. If you want to specify an initial
guess at run-time, you will need to set
Matlab
Python

problem.reinitialize = 1;

problem["reinitialize"] = True

So in summary: The first time the solver is called the initial guess the solver will use has to be
provided by problem.x0. In all subsequent calls the solver will only make use of problem.x0
as its initial guess if problem.reinitialize = 1.

8.7.4 Additional code options specific to the SQP-RTI solver

In addition to the above codeoptions, the following options are specific to the SQP algorithm.
Each of these options can be supplied when generating a solver as a field of codeoptions.
sqp_nlp (e.g. codeoptions.sqp_nlp.TolStat).

Table 8.3: SQP specific codeoptions
option Possible values Default value Description
TolStat positive 10−6 Set the stationarity tolerance required for

terminating the algorithm (the tolerance
required to claim convergence to a KKT
point).

TolEq positive 10−6 Set the feasibility tolerance required for
terminating the algorithm (the tolerance
required to claim convergence to a feasi-
ble point).

reg_hessian positive 5 · 10−9 Set the level of regularization of the hes-
sian approximation (often increasing this
parameter can help if the SQP solver re-
turns exitflag -8 for your problem)

qpinit 0 or 1 0 Set the initialization strategy for the inter-
nal QP solver. 0 = cold start and 1 = cen-
tered start. See also Solver Initialization
(note however, that for the SQP solver
qpinit=2 is not possible).

In addition to these options one can also specify the maximum number of iterations the
internal QP solver is allowed to run in order to solve the quadratic approximation. If one
wishes the QP solver use no more than k iterations to solve a problem one sets
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codeoptions.maxit = k;

8.8 Di�erences between the MATLAB and the Python client

The Python NLP interface is largely similar to the MATLAB interface, but does come with some
language- and implementation-specific di�erences.

• All indices in the problem formulation are expected to be 0-based in Python, as is usual
in this language. This does not include the indices of the generated solver, however,
where outputs are named x01, x02, . . . as in MATLAB. Thus, the problem formulation
before generation requires 0-based indices, whereas the returned solver from the server
uses 1-based indices. This also does not apply to the low-level Python interface, where
indices are 1-based even in the model formulation.

• In the Python client, di�erent model objects must be used when using external functions
or symbolic expressions, namely nlp.ExternalFunctionModel() and nlp.SymbolicModel().
Furthermore, if the high-level interface is to be used for convex problems, this is only
possible using the nlp.ConvexSymbolicModel(). This is di�erent from the MATLAB client,
where the FORCES_NLP function accepts problems of any kind and switches to the
appropriate solver automatically.

• When using the Python client with a nlp.SymbolicModel(), the C code generated for
symbolic expressions is currently not entirely identical to the code generated by MAT-
LAB. While the actual expression evaluation code generated by CasADi is the same, the
structure of the files varies. Specifically, the MATLAB client creates individual C files for
each problem stage with distinct symbolic expressions (leading to varying file names
when changing the problem horizon) whereas all functions are gathered in one file in the
Python client. Yet, the Python client does add one additional file for the FORCES-PRO-
CasADi glue code, which is not present when using the MATLAB client. Lastly, function
names of the evaluation functions di�er.
If you want to get the same code for MATLAB and Python, you must generate the CasADi
C code from one of both clients and then supply this code as an external function in the
other client.

8.9 Examples

• High-level interface: Basic example: In this example, you learn the basics in how to use
FORCESPRO to create an MPC regulation controllers.

• High-level interface: Obstacle avoidance (MATLAB & Python): This example uses a sim-
ple nonlinear vehicle model to illustrate the use of FORCESPRO for real-time trajectory
planning around non-convex obstacles.

• High-level interface: Indoor localization (MATLAB & Python): This examples describes a
nonlinear optimization approach for the indoor localization problem.

• Mixed-integer nonlinear solver: F8 Crusader aircraft: In this example, you learn the ba-
sics in how to use FORCESPRO MINLP solver to solve a mixed-integer optimal control
problem.

• Real-time SQP Solver: Robotic Arm Manipulator (MATLAB & Python): This example de-
scribes how to apply the FORCESPRO SQP solver to control a robotic arm.

• Controlling a DC motor using a FORCESPRO SQP solver: This example describes how to
apply the FORCESPRO SQP solver to control a DC motor.
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Chapter 9

Simulating your custom controller
in Simulink®

FORCESPRO provides a Simulink® interface for easy simulation of your custom controllers
within existing Simulink® diagrams. Once code has been generated the block transforms into
a new block with the appropriate number of ports for your specific configuration. Depending
on your controller configuration you will have di�erent input and output ports on your block.
The port labels are self-explanatory. Just wire the ports of the FORCESPRO block to other
blocks in you Simulink diagram and run the simulation.
Watch an introductory video on how to use the FORCESPRO Simulink® interface here

9.1 Configuration of a custom linear MPC controller using the
FORCESPRO Simulink® GUI

The Simulink® GUI for FORCESPRO is an easy and intuitive way to design model-based opti-
mal controllers that can take decisions considering future information and system constraints.
The general supported problem formulation is as follows:
Given a measurement or estimate of the current state of the system, 𝑥, and possibly:

• an estimate for an additive disturbance, 𝑤𝑘

• the previous control command, 𝑢𝑝𝑟𝑒𝑣 ,
• the output reference to track, 𝑦𝑟𝑒𝑓,𝑘

the controller decides the future control actions 𝑢0, 𝑢1, . . . , 𝑢𝑁−1, and the resulting predicted
state trajectory 𝑥1, 𝑥2, . . . , 𝑥𝑁 , over the prediction horizon, 𝑁 , in order to optimize the control
objectives

𝑁−1∑︁
𝑘=0

(𝑥𝑘+1 − 𝑥𝑠𝑠,𝑘)𝑇𝑄𝑘(𝑥𝑘+1 − 𝑥𝑠𝑠,𝑘) + (𝑢𝑘+1 − 𝑢𝑠𝑠,𝑘)𝑇𝑄𝑘(𝑢𝑘+1 − 𝑢𝑠𝑠,𝑘) + ∆𝑢𝑇
𝑘 𝑇𝑘∆𝑢𝑘

where (︂
𝐴𝑘 − 𝐼 𝐵𝑘

𝐶 0

)︂(︂
𝑥𝑠𝑠,𝑘

𝑢𝑠𝑠,𝑘

)︂
=

(︂
0

𝑦𝑟𝑒𝑓,𝑘

)︂

∆𝑢0 = 𝑢0 − 𝑢𝑝𝑟𝑒𝑣,

∆𝑢0 = 𝑢𝑘 − 𝑢𝑘−1, 𝑘 = 1, ..., 𝑁 − 1
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subject to a linear mode of the system

𝑥1 = 𝐴0𝑥 + 𝐵0𝑢0 + 𝑤0

𝑥𝑘+1 = 𝐴𝑘𝑥𝑘 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘, for all 𝑘 = 1, . . . , 𝑁 − 1

𝑦𝑘 = 𝐶𝑥𝑘, for all 𝑘 = 1, . . . , 𝑁

and satisfying the system constraints

𝑦𝑘 ∈ Y𝑘, for all 𝑘 = 1, 2, . . . , 𝑁

𝑢𝑘 ∈ U𝑘, for all 𝑘 = 0, 1, . . . , 𝑁 − 1

∆𝑢𝑘 ∈ V𝑘, for all 𝑘 = 0, 1, . . . , 𝑁 − 1

The settings for your particular controller can be specified by editing the mask of the FORCE-
SPRO Simulink block. To start a new controller design copy the block in LTI_MPC_lib.mdl
to your Simulink diagram and give a name to your controller. Double click on the new block
and configure the di�erent parameters as described here:

9.1.1 Model

Describe your linear state-space model of the system.
• Time : Choose whether your state-space model is described using di�erential equations

or using a discrete update equation.
• Type : Choose whether your model has an extra a�ne term, i.e. is w present?
• Sampling time : If you are loading a continuous-time model specify the sampling time

in seconds.
• System matrices : Specify the workspace variables describing the di�erent system ma-

trices A,B,C, and , if present, vector w.
• Parameters : Some variables are allowed to be parameters at design time, i.e. they can

change dynamically during runtime. To allow this feature mark the appropriate check
boxes to determine whether the parameter changes over the prediction horizon.

• System dimensions : If one or more system matrices are parameters you might need to
specify any unresolved system dimensions.

9.1.2 Control Objectives

The control objectives are typically a trade-o� between how well the controller tracks the
output reference and how much input action it uses.

• Tracking options: Check if the controller is tracking an output reference or leave
unchecked if the controller is regulating to the origin. If the controller is tracking a
reference, specify whether the output reference 𝑦𝑟𝑒𝑓 will be provided, or whether the
steady-state o�set-free state and input references, 𝑥𝑠𝑠 and 𝑢𝑠𝑠, have already been calcu-
lated. Also specify if the reference is changing over time and whether the changes are
known ahead of time or not (𝑦𝑟𝑒𝑓,𝑘 = 𝑦𝑟𝑒𝑓 ). If reference changes are known ahead of time,
the controller can use this preview information to improve the control performance.

• Input slew rate penalty : Check if the controller should also attempt to minimize the
actuator changes between control samples. If the checkbox is left unmarked, the weight
matrix 𝑇 is set to zero.
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• Terminal cost : If the checkbox is marked the state penalty matrix for the last stage
becomes 𝑄𝑁 := 𝑃 , where 𝑃 is the solution of the discrete-time Ricatti equation. Note that
the matrix 𝑃 can only be computed when matrices 𝐴, 𝐵, 𝐶 , and 𝑅 are known at design
time, i.e. they are not runtime parameters. In general, having a terminal cost allows
for a reduced prediction horizon but imposes certain restrictions on the optimization
methods that can be used.

• Control horizon : Specify the number of samples that the controller looks into the future.
In general, a longer control horizon can improve control performance but leads to longer
computation times.

• Weighting matrices : Check if the weighting matrices on the outputs, 𝑄, on the inputs,
𝑅, and on the input rates, 𝑇 , are available and specify the corresponding workspace vari-
ables. If no weighting matrices are available specify the relative importance for track-
ing/regulation of the di�erent outputs, inputs and slew rates. A high weight on an out-
put tells the controller to focus on improving the tracking performance on that output.
A high weight on an input tells the controller to use less of that input.

• Parameters : The penalty matrices can also be parameters at design time and change
dynamically at runtime. To allow this feature mark the appropriate check boxes to de-
termine whether the parameter changes over the prediction horizon.

9.1.3 System Constraints

Describe system limits that cannot be exceeded due to physical, safety, economic or regulatory
reasons.

• Constraint list : Check which output, input, and slew rate constraints are present. For
each constraint specify the upper and lower bounds. Note that an empty bound implies
a one-sided constraint, e.g. 0 ≤ 𝑢1.

• Soft constraints : Output constraints can be specified to be soft to prevent infeasible
problems. In this case a slack variable, 𝛿, is introduced resulting in the constraint.

−23𝛿 ≤𝑦2 ≤ 23 + 𝛿,

𝛿 ≥ 0.

• Parameters : Upper and lower bounds can also be defined as runtime parameters. To al-
low this feature mark the appropriate check boxes to determine whether the parameter
changes over the prediction horizon.

9.1.4 Estimator Settings

Describe additional characteristics for your customized solver.
• Data type : Choose the data type used by the solver. For some embedded platforms,

floating-point computations (specially double precision) will incur significant computa-
tional delays. In the standard and premium versions of FORCESPRO fixed-point data
types can lead to reduced computation times depending on the platform, but this im-
poses certain restrictions on the optimization methods that can be used.

• Optimization method : The basic version of FORCESPRO always uses a Primal-Dual
Interior-Point (PDIP) method to implement the optimal controller. In the standard and
premium versions of FORCESPRO one can select other alternative methods, such as
ADMM and DFGM, that can lead to reduced computation times. One can also let FORCE-
SPRO choose the most appropriate optimization method for your problem.

• Number of iterations : Specify the maximum number of iterations used in the optimiza-
tion algorithm. One can also let FORCESPRO determine the number of iterations for
your problem.
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• Method-specific options : For some methods the user can choose values for certain pa-
rameters to tune the performance of the method.

• Platform : In the standard and premium versions of FORCESPRO one can choose the
platform that the solver will run on to obtain customized code for the particular plat-
form. For desktop based platforms, choose ‘x86_64’ for 64-bit platforms and ‘x86’ for
32-bit platforms. For embedded platforms, choose between ‘x86’, ‘ARM Cortex M3 and
M4’, ‘ARM Cortex A9’, ‘Tricore’, ‘PowerPC’, or get a customized circuit design described in
VHDL. Note that additional add-ons for FORCESPRO are required to generate code for
di�erent target platforms.

• Description : Add an optional description for your controller that can be used later to
identify the settings for a particular controller instance in your web workspace.

• Solve information : Mark this check box to obtain runtime information from the solver
that can be used to diagnose problems.

Once all the necessary solver options have been specified a custom solver for your controller
can be built by executing the command configure_block. The command returns an error if
any essential information is missing or if the license type is not valid. Note that this command
transforms the block to make it ready for simulation. Once a controller has been generated
you can change the configuration by double clicking the block and running configure_block
again.
Several instance of the FORCESPRO block can exist in the same Simulink® diagram.

9.2 Getting Started - Basic MPC Regulation State Feedback
Example

This example will show how to get started with the Simulink® interface of Forces Pro by de-
signing an MPC regulator for the system below.
You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

𝑥𝑘+1 =

(︂
0.7115 −0.4345
0.4345 0.8853

)︂
𝑥𝑘 +

(︂
0.2173
0.0573

)︂
𝑢𝑘

𝑦𝑘 =
(︀
0 1

)︀
𝑥𝑘

In addition to the task of steering the two states to zero, there are constraints on the single
actuator 𝑢 and on the second state 𝑥2. We require that the actuator 𝑢 does not exceed [−5, 5]
and the state 𝑥2 ≥ 0 for all time. After downloading the files we can start with the design of
the controller. First load the data from myFirstController_data.mat into the workspace
and then open the Simulink® model myFirstController_sim.slx.
Then copy the FORCESPRO Simulink® block MPC_lib_2012b.mdl into your Simulink® dia-
gram. Give the block a name. Here we will call it myFirstController.
We are now ready to configure the controller. Double-click on the block and go to the ‘Model’
tab to enter the details of the system that we want to control. The model described above has
already been discretized with a sampling time of 0.1 seconds. We therefore choose ‘Discrete-
time model’ and chose the type of state-space model (we have no additive term 𝑔 in this
example). Enter the state transition matrix 𝐴, the input matrix 𝐵 and the output matrix 𝐶𝑎𝑙𝑙.
Notice that we use 𝐶𝑎𝑙𝑙, which is just the identity matrix, instead of 𝐶 , since we want to regulate
both states, not just the output of the system.
We are now ready to configure the controller. Double-click on the block and go to the ‘Model’
tab to enter the details of the system that we want to control. The model described above has
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already been discretized with a sampling time of 0.1 seconds. We therefore choose ‘Discrete-
time model’ and chose the type of state-space model (we have no additive term 𝑔 in this
example). Enter the state transition matrix 𝐴, the input matrix 𝐵 and the output matrix 𝐶𝐴𝑙𝑙.
Notice that we use 𝐶𝐴𝑙𝑙, which is just the identity matrix, instead of 𝐶 , since we want to regulate
both states, not just the output of the system.

In the ‘Control Objective’ tab we choose a prediction horizon of 10 steps, i. e. the controller
looks 1 second into the future. We will input the relative weights manually. We weight the
importance of regulating the states 10 times higher then reducing the use of the actuator.
You are encouraged to change these weights and observe the e�ect on the control behaviour.

In the ‘System Constraints’ tab we input the details of the constraints described above. The
second state must remain positive, whereas the first state is left unconstrained. We also have a
constraint on the actuator. We enter the lower bound −5 and the upper bound 5. We can also
check the option ‘Soft Constraint’ for the output constraint to prevent infeasibility problems
in the solver.
Since we are designing a state feedback controller we will leave the only option in the ‘Esti-
mator’ tab as ‘State Feedback’. There will be no estimator built into the FORCESPRO block.
If we wish the controller to give information on the optimization process at each time step
we check the option ‘Get Solve Information’ in the ‘Settings’ tab. The controller will have an
additional output from which we can read this information.
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We are now ready to configure the controller. Simply type

>> configure_block

in the MATLAB® command prompt. This will send a request to the server which will generate a
custom controller for your problem. The code is downloaded to your machine and the FORCE-
SPRO block is automatically updated and made ready for simulation on your Simulink® di-
agram. We can connect the ports of the controller to the rest of the system and run the
simulation.

From the left plot we can see that the actuator remains in the allowed range. The right plot
shows how the second state 𝑥2 is always non-negative (purple graph in the right plot) and
both states are regulated to zero.

9.3 Real-time control with the Simulink block

When a user generates a new solver from either the graphical Simulink interface, or the tex-
tual MATLAB or Python interfaces, several Simulink blocks are automatically created in the
‘interfaces’ folder. These blocks are useful to interface the solver with other Simulink mod-
els for simulation, or for deployment in embedded prototyping hardware using tools such as
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dSpace MicroAutobox or Simulink Coder.
In the following we describe the di�erence between the di�erent available Simulink interfaces.

9.3.1 Input and Output Ports in the Compact Interface

For every solver, there are two Simulink interfaces generated: a standard interface; and a com-
pact interface, which groups parameters and outputs. For problems with many parameters
and outputs, the compact interface is more suitable because it reduces the number of ports
and connections that need to be wired up to the rest of the Simulink model.
The criteria for grouping parameters is the following: parameters of the same type that have
the same number of rows are grouped together into a single stacked parameter. These pa-
rameters are stacked horizontally, e.g. if there are two parameters mapping to eq.c, both of
size 3x1, they will be grouped into a new parameter of size 3x2. The new parameter will get
the name c.
To illustrate the conversion consider a problem with the following parameters and with the
corresponding standard (non-compact) Simulink block:

Name maps2data Dimensions
Amat1 eq.D 2x4
Amat2 eq.D 3x4
Amat3 eq.D 3x4
Amat4 eq.D 3x4
linterm1 cost.f 4x1
linterm2 cost.f 4x1
linterm3 cost.f 4x1
linterm4 cost.f 4x1

For the compact Simulink block, parameters linterm1, linterm2, linterm3 and linterm4
are stacked together into a new parameter f (because the problem data they map to is cost.
f). For the parameters mapping to eq.D, Amat2, Amat3 and Amat4 can be stacked into the
new parameter D. Amat1 is not included into the new parameter because it has two rows
and the concatenation is not possible with the other parameters, which all have three rows.
Parameters are always stacked horizontally according to the stage number they map to.

Name maps2data Dimensions
D eq.D 3x12
f cost.f 4x4
Amat1 eq.D 2x4
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The port dimensions of any FORCESPRO Simulink block can be checked by double-clicking
the block and clicking the ‘Help’ button.
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Chapter 10

Examples

10.1 How to

10.1.1 Basic Example

Consider the following linear MPC problem with lower and upper bounds on state and inputs,
and a terminal cost term:

minimize 𝑥⊤
𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤
𝑖 𝑄𝑥𝑖 + 𝑢⊤

𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

This problem is parametric in the initial state 𝑥 and the first input 𝑢0 is typically applied to the
system after a solution has been obtained. The following code generates a function that takes
−𝐴𝑥 as a calling argument and returns 𝑢0, which can then be applied to the system.
Here is the Matlab code:

%% FORCES multistage form
% assume variable ordering zi = [ui, xi+1] for i=1...N-1

stages = MultistageProblem(N); % get stages struct of length N

for i = 1:N

% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nx+nu; % number of lower bounds
stages(i).dims.u = nx+nu; % number of upper bounds

% cost
if( i == N )

stages(i).cost.H = blkdiag(R,P); % terminal cost (Hessian)
else

stages(i).cost.H = blkdiag(R,Q);
end
stages(i).cost.f = zeros(nx+nu,1); % linear cost terms

(continues on next page)
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(continued from previous page)
% lower bounds
stages(i).ineq.b.lbidx = 1:(nu+nx); % lower bound acts on these indices
stages(i).ineq.b.lb = [umin; xmin]; % lower bound for this stage variable

% upper bounds
stages(i).ineq.b.ubidx = 1:(nu+nx); % upper bound acts on these indices
stages(i).ineq.b.ub = [umax; xmax]; % upper bound for this stage variable

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(nx,nu), A];
end
if( i>1 )

stages(i).eq.c = zeros(nx,1);
end
stages(i).eq.D = [B, -eye(nx)];

end

% RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0
params(1) = newParam('minusA_times_x0',1,'eq.c');

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.
And here’s the Python code:

# FORCES multistage form
# assume variable ordering zi = [ui, xi+1] for i=1...N-1

stages = MultistageProblem(N) # get stages struct of length N

for i in range(N):

# dimension
stages.dims[ i ]['n'] = nx+nu # number of stage variables
stages.dims[ i ]['r'] = nx # number of equality constraints
stages.dims[ i ]['l'] = nx+nu # number of lower bounds
stages.dims[ i ]['u'] = nx+nu # number of upper bounds

# cost
if ( i == N-1 ):

stages.cost[ i ]['H'] = np.vstack((np.hstack((R,np.zeros((nu,
→˓nx)))),np.hstack((np.zeros((nx,nu)),P))))

else:
stages.cost[ i ]['H'] = np.vstack((np.hstack((R,np.zeros((nu,

→˓nx)))),np.hstack((np.zeros((nx,nu)),Q))))
stages.cost[ i ]['f'] = np.zeros((nx+nu,1)) # linear cost terms

# lower bounds
stages.ineq[ i ]['b']['lbidx'] = range(1,nu+nx+1) # lower bound acts on

→˓these indices
stages.ineq[ i ]['b']['lb'] = np.concatenate((umin,xmin),0) # lower bound

→˓for this stage variable

# upper bounds
stages.ineq[ i ]['b']['ubidx'] = range(1,nu+nx+1) # upper bound acts on

→˓these indices
stages.ineq[ i ]['b']['ub'] = np.concatenate((umax,xmax),0) # upper bound

→˓for this stage variable

# equality constraints

(continues on next page)
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(continued from previous page)
if ( i < N-1 ):

stages.eq[i]['C'] = np.hstack((np.zeros((nx,nu)),A))
if ( i>0 ):

stages.eq[i]['c'] = np.zeros((nx,1))
stages.eq[i]['D'] = np.hstack((B,-np.eye(nx)))

# RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0
stages.newParam('minusA_times_x0', [1], 'eq.c')
# define output of the solver
stages.newOutput('u0', 1, range(1,nu+1))

10.1.2 How to Incorporate Preview Information in the MPC Problem

Introduction

In this example the following discrete-time system is considered:

𝑥𝑘+1 =

(︂
0.7115 −0.4345
0.4345 0.8853

)︂
𝑥𝑘 +

(︂
1
1

)︂
𝑢𝑘 +

(︂
1
1

)︂
𝑤𝑘

The control objective is to regulate the two states to zero using the input 𝑢𝑘 , while a distur-
bance 𝑤𝑘 is acting on the system. The disturbance 𝑤𝑘 gets predicted for a horizon of length
𝑁 = 10, which is equal to the control horizon of the model predictive control problem solved
at each time step by the FORCESPRO controller. At each time step 𝑘, a predicted disturbance
for the next 𝑁 steps is considered by the FORCESPRO controller. For the cost function of the
MPC problem, it is assumed that the relative importance of regulating the two states to zero is
ten times as high as the penalty on applying an input. Further it is demanded, that the input
magnitude of the input signal 𝑢 lies in the range [−1.8, 1.8]. The initial state of the system is set
to zero, i. e. 𝑥0 = [0; 0].

One can see that the disturbance drives the states far away from the desired value. In this
example it is shown how FORCESPRO can significantly improve the dynamical behaviour by
using the concept of ‘preview’ when such future information is available.
To implement a FORCESPRO controller with ‘preview’ one can either use the Simulink® inter-
face or the MATLAB® interface. Here both options are presented. The result is the same.

Use preview information in the Simulink® interface

To implement a FORCESPRO controller which makes use of preview information, drag the
LTI_MPC block from the LTI_MPC_lib from the FORCES_PRO folder into the Simulink® model.
After renaming the block, double click on it and chose in the tab Model the settings shown
on the right side. In this example, the preview information comes through the additive term g.
Check the option parameter. g is a parameter because at each time instant new disturbance
predictions enter the controller. Also note that the additive term g is not constant over time,
i.e. the disturbance prediction can vary over the prediction horizon.
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The rest of the configuration of the FORCESPRO block is the same as for the design of a stan-
dard MPC regulator described here. After finishing the configuration, type configure_block
to obtain a customized solver for your controller.

The controller is now configured and the number of inputs ports to the controller is deter-
mined by the length of the preview horizon.
Add the data of the disturbance and its preview from the workspace to model and start the
simulation. To see the impact of using preview information see the section Comparison of
MPC with Preview and Standard MPC below.
You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client. When running this example the code will automatically generate
the Simulink block.

Use preview information in the MATLAB® interface

The same problem can be solved using the MATLAB® Interface. The multistage problem is
constructed as shown in the simple example here and is then extended as shown below.
As in the Simulink® interface, the parametric additive terms g have to be defined. At each
stage of the multistage problem, the equality constraint change, therefore we have to define
a parameter for each stage. In the definition of the parameters, distx represents the name
of the predicted disturbance at stage x of the multistage problem.
During runtime, the preview information is mapped to these parameters.

% RHS of first eq. constr. is a parameter: z1=-A*x0 -Bw*Road
parameter(1) = newParam('minusA_times_x0_BwDist',1,'eq.c');
% Parameter of Preview
parameter(2) = newParam('dist1',2,'eq.c');
parameter(3) = newParam('dist2',3,'eq.c');
parameter(4) = newParam('dist3',4,'eq.c');
parameter(5) = newParam('dist4',5,'eq.c');
parameter(6) = newParam('dist5',6,'eq.c');
parameter(7) = newParam('dist6',7,'eq.c');
parameter(8) = newParam('dist7',8,'eq.c');
parameter(9) = newParam('dist8',9,'eq.c');
parameter(10) = newParam('dist9',10,'eq.c');

After setting up the multistage problem with the parametric equality constraints, configure
the solver settings (i. e. define solver output and solver options), the solver can be generated
by using the command generateCode(...). With the function provided by FORCESPRO, the
system is now ready for simulation.
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Comparison of MPC with Preview and Standard MPC

Figure 10.2 shows the dynamics of the system using a non-preview controller and a preview
controller designed using FORCES Pro. One can see that the maximum deviation of the two
states from their desired value is reduced by a factor 18, and 11, respectively. Compared to
the open loop case, the magnitude of the deviation is reduced by a factor of 47, and 34,
respectively.
Figure 10.1 shows the control action of both controllers. As expected, the input signal remains
in the allowed range. One can see how the preview controller makes use of future information
to provide a more aggressive control action that results in improved system performance.

Figure 10.1: Comparison preview vs. non-preview

10.1.3 HOW TO: Implement an MPC Controller with a Time-Varying Model

Introduction

This ‘HOW TO’ explains how FORCESPRO can be used to handle time-varying models to
achieve better control performance than a standard MPC controller. For this example it is
assumed that the time-varying model consists of four di�erent systems. This could be four
models derived from a nonlinear system at four operating points or from a periodic system.
The systems are listed below. The first system is a damped harmonic oscillator, while the sec-
ond system has eigenvalues on the right plane and is therefore unstable. System three is also
a damped oscillator, but di�ers from system one. System four is an undamped harmonic
oscillator.

System 1: 𝑥𝑘+1 =

(︂
0.7115 −0.6

0.6 0.8853

)︂
𝑥𝑘 +

(︂
0.2173
0.0573

)︂
𝑢𝑘

System 2: 𝑥𝑘+1 =

(︂
0.9 0.5
0.5 1

)︂
𝑥𝑘 +

(︂
0

0.0666

)︂
𝑢𝑘

System 3: 𝑥𝑘+1 =

(︂
0.7115 −0.5

0.5 1

)︂
𝑥𝑘 +

(︂
0.5
0.01

)︂
𝑢𝑘

System 4: 𝑥𝑘+1 =

(︂
0 0.9
−1 0

)︂
𝑥𝑘 +

(︂
0

0.2

)︂
𝑢𝑘
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Figure 10.2: Comparison preview vs. no preview

In this example we assume that system 1 is active for the first 4 steps. Then at step 5 the
model changes to system 2, which stays active for 8 steps. Then we switch to system 3 for the
following 3 steps and finally system 4 is active for the next 5 steps. This pattern is periodic, i. e.
every 20 steps the cycle starts again. Also we have an initial condition of 𝑥0 = [1; 1], a prediction
horizon 𝑁 = 15 and the simulation runs for 40 steps.
The open loop dynamics of this time-varying model are shown on the right. One can see
that the system becomes unstable. The goal is to regulate both states to zero while satisfying
the di�erent input constraints on each system. The constraints on the model are 𝑢 ∈ [−3, 5],
𝑢 ∈ [−5.5, 5.5], 𝑢 ∈ [−3, 5] and 𝑢 ∈ [−0.45, 4.5] for systems 1, 2, 3 and 4, respectively.

At each step 𝑘 FORCESPRO takes the changing state space matrices and the corresponding
input constraints into account, in order to regulate both states to zero as fast as possible. The
following section shows how a controller for this problem can be implemented using the
FORCESPRO MATLAB® Interface.
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Implementation

The FORCESPRO MATLAB® Interface is used to pose a multistage problem problem as de-
scribed here. When taking the changing dynamics over the prediction horizon into account,
the matrices 𝐶𝑖−1 and 𝐷𝑖 of the inter-stage equality have to be defined as parameters for each
prediction step 𝑖. Additionally the lower bounds 𝑧𝑖 and the upper bounds 𝑧𝑖 on the optimiza-
tion variable have to be defined as parameters as they also change over the prediction horizon.
Also, the initial condition has to be set as a parameter. The code below shows the multistage
problem and the commands to design the controller using FORCESPRO.

%% Multistage Problem: Varying Model in Prediction Horizon
stages = MultistageProblem(N); % get stages struct of length N

% Initial Equality
% c_1 = -A*x0
parameter(1) = newParam('minusA_times_x0',1,'eq.c');

for i = 1:N
% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nu; % number of lower bounds
stages(i).dims.u = nu; % number of upper bounds

% lower bounds
stages(i).ineq.b.lbidx = 1; % lower bound acts on these indices
parameter(1+i) = newParam(['u',num2str(i),'min'],i,'ineq.b.lb');

% upper bounds
stages(i).ineq.b.ubidx = 1; % upper bound acts on these indices
parameter(1+N+i) = newParam(['u',num2str(i),'max'],i,'ineq.b.ub');

% cost
stages(i).cost.H = blkdiag(R,Q);
stages(i).cost.f = zeros(nx+nu,1);

% Equality constraints
if( i>1 )

stages(i).eq.c = zeros(nx,1);
end
% Inter-Stage Equlity
% D_i*z_i = [B_i -I]*z_i
parameter(1+2*N+i) = newParam(['D_',num2str(i)],i,'eq.D');
if( i < n)

% C_{i-1}*z_{i-1} = [0 A_i]*z_{i-1}
parameter(1+3*N+i) = newParam(['C_',num2str(i)],i,'eq.C’);

end
end

% define outputs of the solver
outputs(1) = newOutput('u0',1,1);
% solver settings
codeoptions = getOptions('Time_Varying_Model_wP');
% generate code
generateCode(stages,parameter,codeoptions,outputs);

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.
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Comparison of the two approaches

The two plots in Figure 10.3 and Figure 10.4 respectively, show the di�erence between the
response of a controller that assumes constant matrices 𝐴 and 𝐵 over the whole prediction
horizon, and a controller that considers the changing dynamics, e. g. at time step 0 the
second controller knows that system 1 will only be active for the first 4 steps. The left plot
shows the system response and the right plot shows the actuator signals and the varying
system constraints.
Both controllers can satisfy the contraints. To quantify the improvement in control perfor-
mance, the cost function

∑︀𝑁
𝑘=1 𝑥

𝑇
𝑘𝑄𝑥𝑘 + 𝑢𝑇

𝑘𝑅𝑢𝑘 can be evaluated for the whole simulation
length of 𝑛 = 40. For the controller that uses a fixed model for the prediction horizon, the
closed loop cost for regulating the states to zero is 2163.2. With the FORCESPRO time-varying
controller the costs is reduced to 457.5. This is a cost reduction of almost 80%.

Figure 10.3: States Time-varying MPC vs. basic MPC

Figure 10.4: Input Time-varying MPC vs. basic MPC

10.1.4 How to Implement 1-Norm and Infinity-Norm Cost Functions
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Introduction

In this example we use the system described in the Basic MPC Example, but we will imple-
ment non-quadratic costs of the type

||𝑅𝑢𝑖||1

or

||𝑄𝑥𝑖||∞

which are sometimes more meaningful for certain applications.
In both cases we will have to introduce slack variables and additional constraints, hence the
optimization problem will become more challenging to solve, even if the cost function be-
comes linear instead of quadratic.

1-norm reformulation

The 1-norm is the absolute sum of a vector, hence a 1-norm penalty on the actuators can be a
more meaningful objective when, for instance, the fuel consumption is directly proportional
to actuation. The 1-norm also induces sparsity in the solution vector, i.e. a 1-norm cost leads to
solutions where actuators are not used at all if possible, which can more accurately represent
the objective of minimising wear in certain applications.
To formulate a 1-norm cost as an optimization problem we introduce one slack variable 𝜖𝑗 per
vector element of 𝑅𝑢𝑖 (i.e. such that the vector 𝜖 has the same length as the vector 𝑅𝑢𝑖) and
add it to the polytopic constraints. As a result, the problem

minimize ||𝑅𝑢𝑖||1
subject to constraints

is transformed into the problem

minimize
∑︁
𝑗

𝜖𝑗

subject to ±𝑅𝑢𝑖 ≤ 𝜖

constraints

The following MATLAB code shows how to model a problem with 1-norm penalties on the ac-
tuators and quadratic penalties on the states with FORCESPRO. In particular, note the changes
to the cost function and the introduction of polytopic constraints.

%% FORCES multistage form
% assume variable ordering zi = [ui, xi+1, ei] for i=1...N-1

stages = MultistageProblem(N); % get stages struct of length N

for i = 1:N

% dimension
stages(i).dims.n = nx+2*nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nx+nu; % number of lower bounds
stages(i).dims.u = nx+nu; % number of upper bounds
stages(i).dims.p = 2*nu; % number of polytopic constraints

% cost
if( i == N )

(continues on next page)
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(continued from previous page)
stages(i).cost.H = blkdiag(zeros(nu),P,zeros(nu)); % terminal cost

→˓(Hessian)
else

stages(i).cost.H = blkdiag(zeros(nu),Q,zeros(nu));
end
stages(i).cost.f = [zeros(nx+nu,1); ones(nu,1)]; % linear cost terms

% lower bounds
stages(i).ineq.b.lbidx = 1:(nu+nx); % lower bound acts on these indices
stages(i).ineq.b.lb = [umin; xmin]; % lower bound for this stage variable

% upper bounds
stages(i).ineq.b.ubidx = 1:(nu+nx); % upper bound acts on these indices
stages(i).ineq.b.ub = [umax; xmax]; % upper bound for this stage variable

% polytopic bounds
stages(i).ineq.p.A = [ R, zeros(nu,nx), -eye(nu); ...

-R, zeros(nu,nx), -eye(nu)];
stages(i).ineq.p.b = zeros(2*nu,1);

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(nx,nu), A, zeros(nx,nu) ];
end
if( i>1 )

stages(i).eq.c = zeros(nx,1);
end
stages(i).eq.D = [B, -eye(nx), zeros(nx,nu)];

end

% RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0
params(1) = newParam('minusA_times_x0',1,'eq.c');

You can download the Matlab code of this example using this link.

∞-norm formulation

The ∞-norm is the maximum absolute value in a vector, hence an ∞-norm penalty on the
states tries to minimise the maximum deviation of any state from the setpoint rather than the
combined deviation of all the states in the system.
To formulate an ∞-norm cost as an optimization problem we need to introduce a single slack
variable 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 and add polytopic constraints. As a result, the problem

minimize ||𝑄𝑥𝑖||∞
subject to constraints

is transformed into the problem

minimize 𝜖

subject to ±𝑄𝑥𝑖 ≤ 1𝑇 𝜖

constraints

where the vector 1 = [1 . . . 1] has the same length as the vector 𝑄𝑥𝑖.
The following MATLAB code shows how to model a problem with ∞-norm penalties on the
states and quadratic penalties on the inputs with FORCESPRO. In particular, note the changes
to the cost function and the introduction of polytopic constraints. Also note that we only need
to add one more variable per stage.
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%% FORCES multistage form
% assume variable ordering zi = [ui, xi+1, ei] for i=1...N-1

stages = MultistageProblem(N); % get stages struct of length N

for i = 1:N

% dimension
stages(i).dims.n = nx+nu+1; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nx+nu; % number of lower bounds
stages(i).dims.u = nx+nu; % number of upper bounds
stages(i).dims.p = 2*nx; % number of polytopic constraints

% cost
if( i == N )

stages(i).cost.H = blkdiag(R,zeros(nx),0); % terminal cost
→˓(Hessian)

else
stages(i).cost.H = blkdiag(Q,zeros(nx),0);

end
stages(i).cost.f = [zeros(nx+nu,1); 1]; % linear cost terms

% lower bounds
stages(i).ineq.b.lbidx = 1:(nu+nx); % lower bound acts on these indices
stages(i).ineq.b.lb = [umin; xmin]; % lower bound for this stage variable

% upper bounds
stages(i).ineq.b.ubidx = 1:(nu+nx); % upper bound acts on these indices
stages(i).ineq.b.ub = [umax; xmax]; % upper bound for this stage variable

% polytopic bounds
if( i == N )

stages(i).ineq.p.A = [ zeros(nx,nu), P, -ones(nx,1); ...
zeros(nx,nu), -P, -

→˓ones(nx,1)];
else

stages(i).ineq.p.A = [ zeros(nx,nu), Q, -ones(nx,1); ...
zeros(nx,nu), -Q, -

→˓ones(nx,1)];
end
stages(i).ineq.p.b = zeros(2*nx,1);

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(nx,nu), A, zeros(nx,1)];
end
if( i>1 )

stages(i).eq.c = zeros(nx,1);
end
stages(i).eq.D = [B, -eye(nx), zeros(nx,1)];

end

% RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0
params(1) = newParam('minusA_times_x0',1,'eq.c');

Here you can download the Matlab code of this example.

10.1.5 HOW TO: Implement Rate Constraints
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Problem formulation

In this example it is illustrated how slew rate constraints on a system’s actuators can be in-
corporated in the controller design. As a real world example one could think of an airplane,
where the elevator cannot be switched instantaneously from one position to another, i. e. has
a limited slew rate. Here the concept of constraints on the slew rate is shown on the following
system:

𝑥𝑘+1 =

(︂
0.7115 −0.4345
0.4345 0.8853

)︂
𝑥𝑘 +

(︂
0.2173
0.0573

)︂
𝑢𝑘 ⇔ 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘

To have a bound on the slew rate, 𝑢𝑘 − 𝑢𝑘−1 has to lie in some range, i. e.

∆𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 − 𝑢𝑘−1 ≤ ∆𝑢𝑚𝑎𝑥.

One option to set the constraints on the slew rate is to augment the state as follows:

�̂�𝑘 =

(︂
𝑥𝑘

𝑢𝑘−1

)︂
⇔ �̂�𝑘+1 =

(︂
𝐴 𝐵
0 𝐼

)︂
�̂�𝑘 +

(︂
𝐵
𝐼

)︂
�̂�𝑘 ⇔ �̂�𝑘+1 = 𝐴�̂�𝑘 + �̂��̂�𝑘

where �̂� is defined as 𝑢𝑘−𝑢𝑘−1. To implement the problem using FORCESPRO, the multistage
problem has to be defined as stated here. The optimization variable is 𝑧𝑖 = [�̂�𝑖 �̂�𝑖+1]𝑇 .

�̂�𝑘+1 =𝐴�̂�𝑘 + �̂��̂�𝑘

∆𝑢𝑚𝑖𝑛 ≤ �̂� ≤ ∆𝑢𝑚𝑎𝑥

𝑢𝑚𝑖𝑛 ≤𝑢 ≤ ∆𝑢𝑚𝑎𝑥⃦⃦⇓
minimize 1

2

𝑁∑︁
𝑖=1

𝑧𝑇𝑖 𝐻𝑖𝑧𝑖

subject to 𝐷1𝑧1 = 𝑐1

𝐶𝑖−1𝑧𝑖−1 + 𝐷𝑖𝑧𝑖 = 𝑐𝑖

𝑧𝑚𝑖𝑛 ≤ 𝑧𝑖 ≤ 𝑧𝑚𝑎𝑥

The details on how the first equality and the interstage equality look like and how the con-
straints are implemented can be seen in the MATLAB® code below.

Implementation

%% FORCES multistage form
% assume variable ordering zi = [uhat_i, xhat_{i+1}] for i=1...N-1

stages = MultistageProblem(N); % get stages struct of length N

for i = 1:N

% dimension
stages(i).dims.n = 4; % number of stage variables
stages(i).dims.r = 3; % number of equality constraints
stages(i).dims.l = 2; % number of lower bounds: minimal slew rate and

→˓minimal input
stages(i).dims.u = 2; % number of upper bounds: maximal slew rate and

→˓maximal input

% cost
if( i == N )

stages(i).cost.H = blkdiag(R_sr, [P, zeros(2,1); zeros(1,2), 0]);
→˓% terminal cost (Hessian)

(continues on next page)
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(continued from previous page)
else

stages(i).cost.H = blkdiag(R_sr, [Q, zeros(2,1); zeros(1,2), R]);
end
stages(i).cost.f = zeros(3,1); % linear cost terms

% lower bounds
stages(i).ineq.b.lbidx = [1,4]; % indices of lower bounds
stages(i).ineq.b.lb = [dumin; umin]; % lower bounds

% upper bounds
stages(i).ineq.b.ubidx = [1,4]; % indices of upper bounds
stages(i).ineq.b.ub = [dumax; umax]; % upper bounds

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(3,1), [ A, B; zeros(1, 2), 1]];
end
if( i>1 )

stages(i).eq.c = zeros(3,1);
end
stages(i).eq.D = [[B;1], -eye(3)];

end

% RHS of initial equality constraint is a parameter
parameter(1) = newParam('minusAhat_times_xhat0',1,'eq.c');

% Define outputs of the solver
output(1) = newOutput('uhat',1,1);

% Solver settings
codeoptions = getOptions('RateConstraints_Controller');

% Generate code
generateCode(stages,parameter,codeoptions,output);

You can download the Matlab code of this example to try it out for yourself here

Simulation Results

For simulation the following specifications are assumed: the initial condition 𝑥0 ∈ [−2; 6], the
input signal 𝑢 is in the range [−0.5, 2] and the constraints on the slew rate is �̂� ∈ [−1, 0.5]. Figure
10.5, Figure 10.6 and Figure 10.7 show how the controller regulates both states to zero while �̂�
and 𝑢 remain in the required range.

Figure 10.5: The states are both regulated to zero. No constraints are imposed on the states.

In Figure 10.6 and Figure 10.7 one sees how the input signal is maximally increased in the
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Figure 10.6: Plot of 𝑢

Figure 10.7: Plot of 𝑑𝑢

beginning with a slew rate of 0.5, until it reaches its upper bound of 2. In the figure on the
right the slew rate is depicted. One can see that in the beginning, the slew rate stays at its
upper bound 0.5. At simulation step 6 the input signal is maximally reduced. Again this is
visible from the slew rate being at its lower bound −1.

10.1.6 Binary MPC Example

Let us consider a simple MPC example where the system has inputs that can take only two
values, 𝑢𝑚𝑖𝑛 or 𝑢𝑚𝑎𝑥. The original problem (shown on the left) can be reformulated into the
problem on the right, which corresponds to a standard form for which FORCESPRO can gen-
erate a solver. The details of the reformulation are given at the end of this example.
Simple MPC problem with discrete inputs:

minimize 𝑥𝑇
𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥𝑇
𝑖 𝑄𝑥𝑖 + 𝑢𝑇

𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑚𝑎𝑥

𝑢𝑖 ∈ {𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥}

Equivalent problem with binary inputs

minimize 𝑥𝑇
𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥𝑇
𝑖 𝑄𝑥𝑖 + 𝛿𝑇𝑖 �̃�𝛿𝑖 + 𝑓𝑇 𝛿𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 + �̃�𝛿𝑖 + 𝑏

𝑥𝑚𝑖𝑛 ≤ 𝑥𝑖 ≤ 𝑥𝑚𝑎𝑥

𝛿𝑖 ∈ {0, 1}𝑛𝑢
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The problem on the right can now be easily formulated in FORCESPRO. Note that the problem
description is very similar to that of the simple MPC example, with the only modification that
certain variables are marked to be binary. Download and run a complete simulation script to
see the output.

nx = 2; nu = 2;

% assume variable ordering zi = [delta_i; xi+1] for i=1...N-1
stages = MultistageProblem(N);
for i = 1:N

% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nx; % number of lower bounds
stages(i).dims.u = nx; % number of upper bounds
stages(i).bidx = 1:nu; % index of binary variables

% cost
if( i == N )

stages(i).cost.H = blkdiag(Rtilde,P);
else

stages(i).cost.H = blkdiag(Rtilde,Q);
end
stages(i).cost.f = [ftilde; zeros(nx,1)];

% lower bounds
stages(i).ineq.b.lbidx = (nu+1):(nu+nx); % lower bound on states
stages(i).ineq.b.lb = xmin; % upper bound values

% upper bounds
stages(i).ineq.b.ubidx = (nu+1):(nu+nx); % upper bound for this stage variable
stages(i).ineq.b.ub = umax; % upper bound for this stage variable

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(nx,nu), A];
end
if( i>1 )

stages(i).eq.c = -Bconst;
end
stages(i).eq.D = [Btilde, -eye(nx)];

end

% RHS of first eq. constr. is a parameter: z1=-A*x0
params(1) = newParam('minusA_times_x0',1,'eq.c');

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.
You can download the Python code of this example here.

Simulation result

When running the example, you should see the following closed-loop behavior:

Details on problem reformulation

The reformulation is done as follows: we introduce a variable 𝑑𝑒𝑙𝑡𝑎 such that

𝛿 = 0 ⇔ 𝑢 = 𝑢𝑚𝑖𝑛 and 𝛿 = 0 ⇔ 𝑢 = 𝑢𝑚𝑎𝑥
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This can be formulated by the equality constraint

𝑢 = 𝑢𝑚𝑖𝑛 + diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿

where diag denotes a diagonal matrix. To keep the number of variables at a minimum, we
will directly insert this equation into the dynamics:

𝑥+ = 𝐴𝑥 + 𝐵𝑢

= 𝐴𝑥 + 𝐵𝑢𝑚𝑖𝑛 + 𝐵diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿

= 𝐴𝑥 + �̃�𝛿 + 𝑏

where �̃� := 𝐵diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛) and 𝑏 := 𝐵𝑢𝑚𝑖𝑛.
Similarly for the cost function,

𝑢𝑇𝑅𝑢 = (𝑢𝑚𝑖𝑛 + diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿)𝑇𝑅(𝑢𝑚𝑖𝑛 + diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿)

= 𝛿𝑇diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝑅diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝛿 + 2𝑢𝑚𝑖𝑛diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝑅𝛿 + const
= 𝛿𝑇 �̃�𝛿 + 𝑓𝑇 𝛿 + const

where

�̃� = diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝑅diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)

𝑓 = 2𝑅diag(𝑢𝑚𝑎𝑥 − 𝑢𝑚𝑖𝑛)𝑢𝑚𝑖𝑛
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10.2 Y2F interface: Basic example

Consider the following linear MPC problem with lower and upper bounds on state and inputs,
and a terminal cost term:

minimize 𝑥⊤
𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤
𝑖 𝑄𝑥𝑖 + 𝑢⊤

𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

This problem is parametric in the initial state 𝑥 and the first input 𝑢0 is typically applied to the
system after a solution has been obtained. Here we present the problem formulation with
YALMIP, how you can use Y2F to easily generate a solver with FORCESPRO, and how you can
use the resulting controller for simulation.
You can download the Matlab code of this example to try it out for yourself from https://raw.
githubusercontent.com/embotech/Y2F/master/examples/mpc_basic_example.m.

Important: Make sure to have YALMIP installed correctly (run yalmiptest to verify this).

10.2.1 Defining the problem data

Let’s define the known data of the MPC problem, i.e. the system matrices 𝐴 and 𝐵, the pre-
diction horizon 𝑁 , the stage cost matrices 𝑄 and 𝑅, the terminal cost matrix 𝑃 , and the state
and input bounds:

%% MPC problem data

% system matrices
A = [1.1 1; 0 1];
B = [1; 0.5];
[nx,nu] = size(B);

% horizon
N = 10;

% cost matrices
Q = eye(2);
R = eye(1);
if exist('dlqr', 'file')

[~,P] = dlqr(A,B,Q,R);
else

fprintf('Did not find dlqr (part of the Control Systems Toolbox). Will use
→˓10*Q for the terminal cost matrix.\n');

P = 10*Q;
end

% constraints
umin = -0.5; umax = 0.5;
xmin = [-5; -5]; xmax = [5; 5];

10.2.2 Defining the MPC problem

Let’s now dive in right into the problem formulation:
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%% Build MPC problem in Yalmip

% Define variables
X = sdpvar(nx,N+1,'full'); % state trajectory: x0,x1,...,xN (columns of X)
U = sdpvar(nu,N,'full'); % input trajectory: u0,...,u_{N-1} (columns of U)

% Initialize objective and constraints of the problem
cost = 0; const = [];

% Assemble MPC formulation
for i = 1:N

% cost
if( i < N )

cost = cost + 0.5*X(:,i+1)'*Q*X(:,i+1) + 0.5*U(:,i)'*R*U(:,i);
else

cost = cost + 0.5*X(:,N+1)'*P*X(:,N+1) + 0.5*U(:,N)'*R*U(:,N);
end

% model
const = [const, X(:,i+1) == A*X(:,i) + B*U(:,i)];

% bounds
const = [const, umin <= U(:,i) <= umax];
const = [const, xmin <= X(:,i+1) <= xmax];

end

Thanks to YALMIP, defining the mathematical problem is very much like writing down the
mathematical equations in code.

10.2.3 Generating a solver

We have now incrementally built up the cost and const objects, which are both YALMIP
objects. Now comes the magic: use the function optimizerFORCES to generate a solver for
the problem defined by const and cost with the initial state as a parameter, and the first
input move 𝑢0 as an output:

%% Create controller object (generates code)
% for a complete list of codeoptions, see
% https://www.embotech.com/FORCES-Pro/User-Manual/Low-level-Interface/Solver-
→˓Options
codeoptions = getOptions('simpleMPC_solver'); % give solver a name
controller = optimizerFORCES(const, cost, codeoptions, X(:,1), U(:,1), {'xinit'}, {
→˓'u0'});

That’s it! Y2F automatically figures out the structure of the problem and generates a solver.

10.2.4 Calling the generated solver

We can now use the controller object to call the solver:

% Evaluate controller function for parameters
[output,exitflag,info] = controller{ xinit };

or call the generated MEX code directly:

% This is an equivalent call, if the controller object is deleted from the
→˓workspace
[output,exitflag,info] = simpleMPC_solver({ xinit });
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Tip: Type help solvername to get more information about how to call the solver.

10.2.5 Simulation

Let’s now simulate the closed loop over the prediction horizon 𝑁 :

%% Simulate
x1 = [-4; 2];
kmax = 30;
X = zeros(nx,kmax+1); X(:,1) = x1;
U = zeros(nu,kmax);
problem.z1 = zeros(2*nx,1);
for k = 1:kmax

% Evaluate controller function for parameters
[U(:,k),exitflag,info] = controller{ X(:,k) };

% Always check the exitflag in case something went wrong in the solver
if( exitflag == 1 )

fprintf('Time step %2d: FORCES took %2d iterations and %5.3f ', k, info.it,
→˓info.solvetime*1000);

fprintf('milliseconds to solve the problem.\n');
else

info
error('Some problem in solver');

end

% State update
X(:,k+1) = A*X(:,k) + B*U(:,k);

end

10.2.6 Results

The results of the simulation are presented in Figure 10.8. The plot on the top shows the
system’s states over time, while the plot on the bottom shows the input commands. We can
see that all constraints are respected.

10.2.7 Variation 1: Parametric cost

One possible variation is if we consider the weighting matrices 𝑄, 𝑅 and 𝑃 as parameters, so
that we can tune them after the code generation. The following problem is solved at each
time step:

minimize 𝑥⊤
𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤
𝑖 𝑄𝑥𝑖 + 𝑢⊤

𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

As usual, this problem is also parametric in the initial state 𝑥 and the first input 𝑢0 is applied to
the system after a solution has been obtained. To be able to define the weighting matrices 𝑄,
𝑅 and 𝑃 as parameters, first we define them as sdpvars and then tell optmizerFORCES that
they are parameters:
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Figure 10.8: Simulation results of the states (top, in blue and red) and input (bottom, in blue)
over time. The state and input constraints are plotted in red dashed lines.
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% Cost matrices - these will be parameters later
Q = sdpvar(nx);
R = sdpvar(nu);
P = sdpvar(nx);

% [... formulate MPC problem in YALMIP ...]

% Define parameters and outputs
codeoptions = getOptions('parametricCost_solver'); % give solver a name
parameters = { X(:,1), Q, R, P };
parameterNames = { 'xinit', 'Q', 'R', 'P' };
outputs = U(:,1) ;
outputNames = {'controlInput'};
controller = optimizerFORCES(const, cost, codeoptions, parameters, outputs,
→˓parameterNames, outputNames);

You can download the Matlab code of this variation to try it out for yourself from https://raw.
githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_cost.m.

10.2.8 Variation 2: Time-varying dynamics

Another possible variation is if we consider the state-space dynamics matrices 𝐴 and 𝐵 as
parameters, so that we can change them after the code generation. The following problem is
solved at each time step:

minimize 𝑥⊤
𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤
𝑖 𝑄𝑥𝑖 + 𝑢⊤

𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

As usual, this problem is also parametric in the initial state 𝑥 and the first input 𝑢0 is ap-
plied to the system after a solution has been obtained. To be able to define the state-space
dynamics matrices 𝐴 and 𝐵 as parameters, first we define them as sdpvars and then tell
optmizerFORCES that they are parameters:

A = sdpvar(nx,nx,'full'); % system matrix - parameter
B = sdpvar(nx,nu,'full'); % input matrix - parameter

% [... formulate MPC problem in YALMIP ...]

% Define parameters and outputs
codeoptions = getOptions('parametricDynamics_solver'); % give solver a name
parameters = { x0, A, B };
parameterNames = { 'xinit', 'Amatrix', 'Bmatrix' };
controller = optimizerFORCES(const, cost, codeoptions, parameters, U(:,1),
→˓parameterNames, {'u0'} );

You can download the Matlab code of this variation to try it out for yourself from https://raw.
githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_dynamics.m.

10.2.9 Variation 3: Time-varying constraints

One final variation is if we consider the constraint inequalities as parameters, so that we can
change them after the code generation. The inequalities are defined by a time-varying 2 × 2
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matrix that is defined by 2 parameters:

𝑅𝑘𝑥 ≤ 𝑅𝑘�̄�

where 𝑘 is the simulation step and the rotation matrix is defined by:

𝑅𝑘 =

[︂
cos(𝑘𝑤) − sin(𝑘𝑤)
sin(𝑘𝑤) cos(𝑘𝑤)

]︂
=

[︂
𝑟1 −𝑟2
𝑟2 𝑟1

]︂
where 𝑘 is the simulation step and 𝑤 a fixed number. Overall, the following problem is solved
at each time step:

minimize 𝑥⊤
𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤
𝑖 𝑄𝑥𝑖 + 𝑢⊤

𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

𝑅𝑘𝑥𝑖 ≤ 𝑅𝑘�̄�

As usual, this problem is also parametric in the initial state 𝑥 and the first input 𝑢0 is applied
to the system after a solution has been obtained. To be able to define the rotation matrix 𝑅𝑘

as a parameter, first we define 𝑟1 and 𝑟2 as sdpvars and then tell optmizerFORCES that they
are parameters:

sdpvar r1 r2 % parameters for rotation matrix
R = [r1, -r2; r2, r1];

% [... formulate MPC problem in YALMIP ...]

% Define parameters and outputs
parameters = { X(:,1), r1, r2 };
parameterNames = { 'xinit', sprintf('cos(k*%4.2f)',w), sprintf('sin(k*%4.2f)',w) };
outputs = U(:,1);
outputNames = {'u0'};
controller = optimizerFORCES(const, cost, codeoptions, parameters, outputs,
→˓parameterNames, outputNames);

You can download the Matlab code of this variation to try it out for yourself from https://raw.
githubusercontent.com/embotech/Y2F/master/examples/mpc_parametric_inequalities.m.
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10.3 Low-level interface: Active Suspension Control

10.3.1 Introduction

The concept of using future information, as described in the section How to Incorporate Pre-
view Information in the MPC Problem can be applied to more advanced systems. In this
example a driving vehicle is considered, equipped with sensors that measure the unevenness
of the road ahead as shown in the picture below.

Figure 10.9: Figure borrowed from [GörSch]

The preview information can be used to improve the riding comfort, i. e. minimize the heave,
pitch and roll accelerations, by actively controling the suspension of the vehicle. This example
is based on the reduced car model described in [GörSch]
The states 𝑥 of the system are ‘heave displacement’ 𝑧𝑏 [m], ‘pitch angle’ 𝜙 [rads], ‘roll angle’
𝜃 [rads], ‘heave velocity’ �̇�𝑏 [m/s], ‘pitch rate’ �̇� [rads/s] and ‘roll rate’ �̇� [rads/s]. The input 𝑢
[m] to the system are the ‘active spring displacements’. The output 𝑦 is given by the ‘heave
acceleration’ 𝑧𝑏 [m/s2], the ‘pitch acceleration’ 𝜙 [m/s2] and the ‘roll acceleration’ 𝜃 [m/s2]. In
the reduced model, the input contains not only the active spring displacements but also the
measurements of the height profile of the upcoming road 𝑤 and its first derivative �̇�.

𝑥 :=

⎛⎜⎜⎜⎜⎜⎜⎝
heave displacement [m]

pitch angle [rads]
roll angle [rads]

heave velocity [m/s]
pitch rate [rads/s]
roll rate [rads/s]

⎞⎟⎟⎟⎟⎟⎟⎠
𝑢 :=

(︀
active spring displacements [m]

)︀
𝑦 :=

⎛⎝ heave acceleration [m/s2]
pitch acceleration [rads/s2]
roll acceleration [rads/s2]

⎞⎠
There are constraints on the actuators, i. e. minimal and maximal adjustment track, 𝑢 =
−0.04[𝑚] and 𝑢 = 0.04[𝑚]. This results in the following state space system:

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢𝑢(𝑡) + 𝐵𝑤

(︂
𝑤(𝑡)
�̇�(𝑡)

)︂
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)

In the following it is shown how the FORCESPRO MATLAB Interface can be used to design a
controller using preview information, substantially increasing the riding comfort compared to
a vehicle with a passive suspension. The discrete vehicle model is sampled at 0.025 [s] and it
is assumed that road preview information for 0.5 [s] (20 steps) is available to the controller.

10.3.2 Disturbance Model: Speed Bump

The vehicle is assumed to be driving at a constant speed of 5 [m/s] over a speed bump of
length 1 [m] with a height of 0.1 [m]. The disturbance in time domain is depicted on the right
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side. The road bump only hits the front right wheel, while the front left wheel is not a�ected.
The same bump will hit the rear right wheel 1.12 [s] after it hits the front wheel.

10.3.3 Implementation of Preview Information

This is a linear MPC problem with lower and upper bounds on inputs and a terminal cost term:

minimize 𝑥𝑇
𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥𝑇
𝑖 𝑄𝑥𝑖 + 𝑢𝑇

𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖 + 𝐵𝑤𝑤𝑖 + 𝐵𝑤�̇�𝑖

𝑢 ≤ 𝑢𝑖 ≤ 𝑢

At each sampling instant the initial state 𝑥 and the preview information 𝑤𝑖 and �̇�𝑖 change, and
the first input 𝑢0 is typically applied to the system after an optimal solution has been obtained.

% Parameters: First Equation RHS
parameter(1) = newParam('minusA_times_x0_minusBw_times_w_pre',1,'eq.c');
% Paramteres: Preview Information
parameter(2) = newParam('pre2_w',2,'eq.c');
...
parameter(n) = newParam('pren_w',n,'eq.c');
...
parameter(N) = newParam('preN_w',N,'eq.c');

As described in the section How to Incorporate Preview Information in the MPC Problem, the
parametric additive terms g, which corresponds to the term 𝐵𝑤𝑤𝑖 + 𝐵𝑤�̇�𝑖, has to be defined.
At each stage of the multistage problem, the ‘g’ term (containing the preview information)
in the equality constraint is di�erent, therefore we have to define a parameter for each stage.
In the definition of the parameters, ‘pren_w’ represents the name of the term 𝐵𝑤𝑤𝑛 + 𝐵𝑤�̇�𝑛

at stage 𝑛 of the multistage problem. During runtime, the preview information is mapped to
these parameters.
𝑁 is the length of the prediction horizon which is set to be equal to the preview horizon. The
MATLAB code below, generates the function VEHICLE_MPC_withPreview that takes -𝐴𝑥 and
the additive term g as a calling argument and returns 𝑢0, which can then be applied to the
system:

%% MPC with Preview
% FORCESPRO multistage form
% assume variable ordering zi = [ui; xi+1] for i=1...N-1

% Parameters: First Eq. RHS
parameter(1) = newParam('minusA_times_x0_minusBw_times_w_pre’,1,'eq.c’);

stages = MultistageProblem(N);
for i = 1:N

% dimension

(continues on next page)
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(continued from previous page)
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nu; % number of lower bounds
stages(i).dims.u = nu; % number of upper bounds

% cost
if( i == N )

stages(i).cost.H = blkdiag(R,P);
else

stages(i).cost.H = blkdiag(R,Q);
end
stages(i).cost.f = zeros(nx+nu,1);

% lower bounds
stages(i).ineq.b.lbidx = 1:nu; % lower bound acts on these indices
stages(i).ineq.b.lb = umin*ones(4,1); % lower bound for the input signal

% upper bounds
stages(i).ineq.b.ubidx = 1:nu; % upper bound acts on these indices
stages(i).ineq.b.ub = umax*ones(4,1); % upper bound for the input signal

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(nx,nu), Ad];
end
stages(i).eq.D = [Bdu, -eye(nx)];

% Parameters for Preview
if( i < N )

parameter(i+1) = newParam(['pre’,num2str(i+1),’_w’],i+1,'eq.c’);
end

end

% define outputs of the solver
outputs(1) = newOutput('u0',1,1:nu);

% solver settings
codeoptions = getOptions('VEHICLE_MPC_withPreview');

% generate code
generateCode(stages,parameter,codeoptions,outputs);

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

10.3.4 Comparison of Passive Vehicle and Active Suspension Control Us-
ing Preview Information

In Figure 10.10, Figure 10.11 and Figure 10.12, the accelerations in the direction heave, pitch
and roll respectively are depicted. The blue graphs represent the controlled outputs while the
red ones show the uncontrolled accelerations. One can see that the vertical dynamics of the
vehicle are reduced substantially. There are smaller maximal accelerations and also less time
is required to regulate the accelerations back to zero.
Applying Model Predictive Control with Preview using FORCESPRO the riding comfort is im-
proved significantly with minimum e�ort for designing the controller and generating code
which can be deployed on any embedded automotive control unit.
The four graphs in Figure 10.13, Figure 10.14, Figure 10.15 and Figure 10.16 below show the input
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Figure 10.10: Acceleration in heave direction

Figure 10.11: Acceleration in pitch direction

Figure 10.12: Acceleration in roll direction
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signal on each of the four actuators. One can see that model predictive controller starts lifting
the front right part of the vehicle body as soon as the bump is in sight of the preview sensor,
i. e. at time 𝑡 = 0.3 [s]. This is 0.5 seconds, the length of the preview horizon, before the front
right wheel hits the bump at time 𝑡 = 0.8 [s]. This causes a better absorption of the shock and
therefore reduced accelerations. The input constraints are also satisfied and 𝑢 never exceeds
the admitted range.

Figure 10.13: Input front left actuator

Figure 10.14: Input front right actuator

10.4 Low-level interface Robust estimation (Kalman filter)

10.4.1 System Description

In this example we consider the water tank system depicted on the right. Tank 1 has one input
flow and one output flow. Also tank 2 has one input flow and one output flow. Tank 3 has two
input flows and one output flow. The system dynamics are represented via the first equation
below. As an output 𝑧 we have a measurement of the level of tank 1 and of the level of tank 3.

𝑥+ = 𝐴𝑥 + 𝐵𝑢 + 𝑣 =

⎛⎝1 − 𝛼1 0 0
0 1 − 𝛼2 0
𝛼+ 𝛼2 1 − 𝛼3

⎞⎠𝑥 +

⎛⎝0.5
0.5
0

⎞⎠𝑢 + 𝑣

𝑧 = 𝐻𝑥 + 𝑤 + 𝑦 =

(︂
1 0 0
0 0 1

)︂
𝑥 + 𝑤 + 𝑦
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Figure 10.15: Input rear left actuator

Figure 10.16: Input rear right actuator
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The states of the system are 𝑥 =
(︀
𝑥1 𝑥2 𝑥3

)︀𝑇 is given. There is a process noise 𝑣 and a
measurement noise 𝑤, both are Gaussian Random Variables with mean 0 and variance 𝑄 and
𝑅, i. e. 𝑣 ∼ 𝒩 (0, 𝑄) and 𝑤 ∼ 𝒩 (0, 𝑅). The sparse signal 𝑦, which is used to model sensor failures,
distorts the measurement signal additionally.
The goal of this example is to show, that the standard Kalman Filter is not working that good
anymore if sensor failures are present. There does not exist an analytic solution to the prob-
lem if the disturbance 𝑦 is present. Using the robust Kalman Filter, i. e. replacing the stan-
dard measurement update step with an extended optimization problem, which is solved by
FORCESPRO, the filter is robust against 𝑦 and the estimated states are much more accurate
compared to the standard Kalman Filter. To process the measurement data online, the opti-
mization problem has to be solved in a su�ciently short amount of time.

10.4.2 Robust Kalman filter

Recall that the standard Kalman Filter, which would be applied if disturbance signal 𝑦 were not
present, consists of two steps: First a prediction step is made, where a predicted stated 𝑥𝑝(𝑘)
is calculated based on the estimated state 𝑥𝑚(𝑘−1). Additionally, the predicted variance 𝑃𝑝(𝑘)
gets calculated in the prediction step. The measurement step returns the variance 𝑃𝑚(𝑘) and
the state esimate 𝑥𝑚(𝑘). This state estimate 𝑥𝑚(𝑘) is basically the solution of the optimization
problem

minimize 𝑤𝑇𝑅−1𝑤 + (𝑥− �̂�𝑝)𝑇𝑃−1(𝑥− �̂�𝑝)

subject to 𝑧 = 𝐻𝑥 + 𝑤

In this example, we assume that out of 100 measurements the sensors of tank 1 gand tank
3 gives each 5 bogus signals. In order to make the state estimator robust against the sensor
failures 𝑦, we solve the following convex optimization problem at every time instance

minimize 𝑤𝑇𝑅−1𝑤 + (𝑥− �̂�𝑝)𝑇𝑃−1(𝑥− �̂�𝑝) + 𝜆||𝑦||1
subject to 𝑧 = 𝐻𝑥 + 𝑤 + 𝑦

In the optimization problem 𝑤, 𝑥 and 𝑦 are optimization variables. The cost function of the
optimization problem is extended with the 𝑙1-penaltiy which is non-quadratic. The value 𝜆 ≥ 0
is a tuning parameter. For 𝜆 large enough, the solution of the optimization problem has
𝑦 = 0 and therefore the estimates of the robust Kalman Filter coincides with the standard
Kalman Filter solution. This optimization problem can be transformed as described in here.
We transform this problem to the form required by FORCESPRO, which reads as

minimize 1

2
𝑧𝑇 �̃�𝑧 + 𝑓𝑇 𝑧

subject to 𝐷𝑧 = 𝑧

𝐴𝑧 ≤ 𝑏
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where the optimization variable is given by 𝑧 =
(︀
𝑥𝑇 𝑤𝑇 𝑦𝑇 𝑒𝑇

)︀𝑇 . Please find below the
MATLAB code to generate the solver for the optimization problem with FORCESPRO. The
covariance matrix 𝑃−1 is updated at every time step and therefore the problem can’t be solved
explicitly. In this problem three parameters need to be defined, which are 𝐻 , 𝑓 - containing the
predicted covariance and the predicated state - and 𝑐 - contains the current measurement.

% Create multistage struct
stages = MultistageProblem(1);

% Dimension
[ny nx] = size(H);
nw = ny;
ne = ny;
stages(1).dims.n = nx+nw+ny+ne; % number of stage variables
stages(1).dims.r = ny; % number of equality constraints
stages(1).dims.p = 2*ne; % number of polytopic constraints

% Ploytopic bounds
stages(1).ineq.p.A = [zeros(ny,nx), zeros(ny,nw), lambda*eye(ny), -eye(ne);...

zeros(ny,nx), zeros(ny,nw), -
→˓lambda*eye(ny), -eye(ne)];
stages(1).ineq.p.b = zeros(2*ne,1);

% Equality constraints
stages(1).eq.D = [H, eye(nw), eye(ny), zeros(ne)];

% Parameters
params(1) = newParam('H_i',1,'cost.H');
params(2) = newParam('f_i',1,'cost.f’);
params(3) = newParam('z_i',1,'eq.c');

% Output
outputs(1) = newOutput('x_hat_RKF',1,1:3);

% Code Generation
codeoptions = getOptions('Robust_KF');
generateCode(stages,params,codeoptions,outputs);

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

10.4.3 Simulation and Comparison

In the simulation the optimization problem has to be solved at every time instance. In the
prediction step the state 𝑥𝑝 is calculated based on the estimation of the current state. Also
the the variance is updated in every prediction step. In the measurement update step the
estimated state 𝑥𝑚 is calculated based on the predicted state, its predicted variance and the
current measurement 𝑧 by the function Robust_KF() generated by FORCESPRO.

for i = 2:(N+1)
% Prediction Step
x_p_RKF = Ak(:,:,i-1)*x_hat_RKF(:,i-1)+B*u(i-1);
P_p_RKF(:,:,i) = Ak(:,:,i-1)*P_hat_RKF(:,:,i-1)*Ak(:,:,i-1)' + Q;

% Measurement Update Step - Optimization Problem
problem.H_i = [2*inv(P_p_RKF(:,:,i)),zeros(nx,nw+ny+ne);...

zeros(ny,nx),2*R_inv,zeros(ny,ny+ne);...
zeros(ny+ne,nx+nw+ny+ne)];

problem.f_i = [-2*(inv(P_p_RKF)*x_p_RKF);...
zeros(nw,1);...

(continues on next page)
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(continued from previous page)
zeros(ny,1);...
ones(ne,1)];

problem.z_i = z(:,i);
[solverout,exitflag,info] = Robust_KF(problem);
solve_time(1,i-1) = info.solvetime;
x_hat_RKF(:,i) = solverout.x_hat_RKF;
P_hat_RKF(:,:,i) = P_p_RKF(:,:,i);

end

In the plots in Figure 10.17, Figure 10.18 and Figure 10.19 respectively, the estimated states
are depicted. The estimates calculated via the robust Kalman Filter, in blue, are much more
accurate then the standard approach. The peaks in the red line indicate sensor failures against
which the standard Kalman Filter is not robust.

Figure 10.17: Estimated state 𝑥(1)

Figure 10.18: Estimated state 𝑥(2)

The impact on the RMS error magnitude of the robust Kalman Filter can be seen in the plots in
Figure 10.20, Figure 10.21 and Figure 10.22. The magnitude of the robust Kalman Filter depicted
in blue, is reduced by ∼ 65% for state 1, ∼ 12% for state 2, ∼ 61% for state 3 (this values vary).
Applying online optimization with FORCESPRO improves the quality of the state estimations
significantly.
With FORCESPRO convex optimization can be embedded directly in signal processing algo-
rithms that run online, with strict real-time deadlines, even at rates of tens of kilohertz. In this
example the optimization problem is solved in ∼ 0.1𝑚𝑠.
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Figure 10.19: Estimated state 𝑥(3)

Figure 10.20: RMS error for 𝑥(1)

Figure 10.21: RMS error for 𝑥(2)
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Figure 10.22: RMS error for 𝑥(3)

10.5 Low-level interface: Spacecraft Rendezvous

10.5.1 Introduction

This example uses the concepts described in the subsections HOW TO: Implement an MPC
Controller with a Time-Varying Model and How to Implement 1-Norm and Infinity-Norm Cost
Functions.
The goal is to design a controller to perform a spacecraft rendezvous operation, where a con-
trolled chaser spacecraft is performing rendezvous with a passive target that is orbiting around
Mars. Using a time-varying prediction model allows to perform spacecraft maneouvers in el-
liptical orbits and allows the controller to be updated when the are changes in the system
parameters or control objectives. This example is based on the models described in [HarMac14]
and the references therein.

10.5.2 Model

The Yamanaka-Ankersen (Y-A) equations are used to describe the dynamics, where the six
states x of the system represent the relative position and velocity of the chaser with respect
to the target in the three dimensions. These equations apply in elliptical orbits, but are time-
varying in terms of the true anomaly, 𝑣, of the target, i.e. the model is given by

𝑥𝑘+1 = 𝐴(𝑣)𝑥𝑘 + 𝐵(𝑣)𝑢𝑘

and the requirement is that the state at the end of the horizon is at the target. The plant input
is modeled as an impulsive change in velocity, such that

𝐵(𝑣) = 𝐴(𝑣)

(︂
0
𝐼3

)︂
You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

10.5.3 Constraints

The three impulsive control inputs can give a maximum change in velocity of 5 meters per
second along each axis. In addition, the chaser spacecraft is required to remain within a cone
of vision of 20 degrees from the target and must not go behind the target to facilitate the
docking maneuver.
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10.5.4 Objective

The goal of the controller is to balance the following objectives:
• the chaser should be always as close as possible to the target,
• use as little fuel as possible to get there.

The second objective is more important, hence it is weighed higher. We consider two types
of cost functions: one where all the terms are weighed using standard quadratic penalties;
and one where the inputs are penalised using the 1-norm, which better reflects the propellant
consumption being directly proportional to delivered thrust and also attempts to minimise
the use of the actuators. In order to implement the 1-norm cost we need to add slack variables
and additional constraints as described in How to Implement 1-Norm and Infinity-Norm Cost
Functions.
The following code shows how to generate an MPC controller for the spacecraft rendezvous
problem with a time-varying model and a 1-norm penalty on the actuators.

%% MPC with Preview
% FORCESPRO multistage form
% assume variable ordering zi = [ui; xi+1, eui] for i=1...N-1

% Parameters: First Eq. RHS
parameter(1) = newParam('minusA_times_x0’,1,'eq.c’);

stages = MultistageProblem(N);
for i = 1:N

% dimension
stages(i).dims.n = nx+2*nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = nu; % number of lower bounds
stages(i).dims.u = nu; % number of upper bounds
stages(i).dims.p = 3+2*nu; % number of polytopic constraints

% cost
stages(i).cost.H = blkdiag(zeros(nu),Q,zeros(nu));
stages(i).cost.f = [zeros(nu,1); -Q*xs; ones(nu,1)];

% lower bounds
stages(i).ineq.b.lbidx = 1:nu; % lower bound acts on these indices
stages(i).ineq.b.lb = umin*ones(4,1); % lower bound for the input signal

% upper bounds
stages(i).ineq.b.ubidx = 1:nu; % upper bound acts on these indices
stages(i).ineq.b.ub = umax*ones(4,1); % upper bound for the input signal

% polytopic bounds
stages(i).ineq.p.A = [ zeros(3,nu), Hx, zeros(3,nu); ...

R, zeros(nu,nx), -eye(nu); ...
-R, zeros(nu,nx), -eye(nu)];

stages(i).ineq.p.b = [ hx; R*us; -R*us ];

% equality constraints
if( i < N )

params(end+1) = newParam(['C_',num2str(i)],i,'eq.C');
end
params(end+1) = newParam(['D_',num2str(i)],i,'eq.D');
if( i > 1 )

params(end+1) = newParam(['pre’,num2str(i+1),’_w’],i+1,'eq.c’);
end

(continues on next page)

Chapter 10. Examples 139



FORCESPRO User Manual

(continued from previous page)
end

10.5.5 Spacecraft Rendezvous Manoeuvers with and without 1-Norm Cost

The simulation describes a rendezvous maneover were the chaser starts 15km away from the
target spacecraft and the goal is to approach the target to within 1000 meter distance, while
respecting the constraints, to start the docking maneuver. The target is modeled as being
in a Keplerian orbit around Mars with an orbital radius of 3,600,000 meters. The controller
sampling time is 200s but the target and chaser dynamics are simulated in intervals of 1s for
illustration purposes. The plots in Figure 10.23 illustrates the behaviour of the controlled space-
craft with standard quadratic cost, while the plots in Figure 10.24 shows the behaviour of the
controller when the quadratic cost on the actuators is swapped with a 1-norm penalty. Notice
the sparsity in the actuation commands - the thrusters are only engaged when necessary to
keep the spacecraft within the cone of visibility of the target.

Figure 10.23: Behaviour with quadratic cost.

10.6 Low-level interface DC/DC converter

10.6.1 Example Overview

The example starts by describing the power electronics of the DC/DC converter and how the
control oriented model of the system is derived. Then the potential advantages of model
predictive control over a conventional PI controller are discussed. Afterwards the design of
the MPC controller using FORCESPRO is presented. Finally, the simulation setup is explained
and the simulation results using PI and MPC are compared.
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Figure 10.24: Behaviour with cost given by 1-norm.

• Introduction: General introduction to the example.
• Control Objective: What can be gained by applying MPC with FORCESPRO.
• MPC via FORCESPRO: How to generate a solver with FORCESPRO for the power elec-

tronic converter.
• Simulation: Illustration on how to simulate the system with the generated controller.
• Comparison: Discussion of the results of the simulation.

10.6.2 Special Requirements

For the simulation of the power electronic converter in this example PLEXIM provided their
software PLECS®. PLECS® is the tool for high-speed simulations of power electronic systems.
To simulate this example, PLECS Blockset with a viewer licence is required. Please follow the
instructions on how to install PLECS® below.
PLECS Blockset installation instructions:

• Download PLECS® Blockset installation script available from here.
• Download the required PLECS® Blockset package file here and save it in the same di-

rectory as the file installplecs.m.
• Run the file installplecs.m in MATLAB® from the command line.
• During the installation a dialog asks where to save ‘PLECS’. Choose a location which is in

the MATLAB® search path.
• During the installation a dialog asks for a license. Install the ‘viewer license’ as shown in

the figures below.
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Once the installation is completed you are ready to simulate the files provided with this ex-
ample.

10.6.3 Introduction - Control of a DC/DC Converter

An important field of application for model predictive control are power electronic systems.
In this example a typical DC/DC converter which supplies an isolated DC voltage to a telecom
system is considered. Assume that the input voltage of the two-transistor forward converter,
depicted below on the left, is a constant voltage 𝑈𝐼𝑁 delivered by a previous PFC rectifier stage.
The load attached to the converter has an ohmic-capacitive characteristic.
This two-transistor forward converter can be modelled as a buck converter from which it is
more convenient to derive a control oriented model. The buck converter has only one switch
and the input voltage 𝑈𝑖𝑛 is the actual input voltage scaled by the transformer turn ratio. The
equivalent circuit is depicted on the right in the figure below.

Figure 10.25: Based on the lecture material Power Electronic Systems II, Institute for Power
Electronic Systems, ETH Zürich

The states of the control oriented model, which is used as a model for the predictive controller,
are the inductor current 𝑖𝐿 and the capacitor voltage 𝑢𝐶 . Further there are the input signal d
and the disturbances in the input voltage and the load current 𝑤 =

(︀
𝑢𝑖𝑛 𝑖𝐿𝑜𝑎𝑑

)︀𝑇 . As an output
signal the states 𝑖𝐿 and 𝑢𝐶 as well as the output voltage uout are considered. The small signal
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model (small signals are marked with a hat) in state-space form reads as:

𝑑

𝑑𝑡
�̂� =

(︂
−𝑅

𝐿 − 1
𝐿

1
𝐶 0

)︂
�̂� +

(︂
𝑈𝑖𝑛

𝐿
0

)︂
𝑑 +

(︂
𝐷
𝐿 −𝑅

𝐿
0 − 1

𝐶

)︂
�̂�

𝑦 =

⎛⎝1 0
0 1
𝑅 1

⎞⎠ �̂� +

⎛⎝0 0
0 0
0 −𝑅

⎞⎠ �̂�

⇑⃦⇓
𝑑

𝑑𝑡
�̂� = 𝐴 · �̂� + 𝐵1 · 𝑢 + 𝐵2 · �̂�

𝑦 = 𝐶 · �̂� +

(︂
𝐷2
𝐷4

)︂
· �̂�

10.6.4 Control Objective by Using Model Predictive Control

The converter should provide a constant output voltage 𝑈𝑂𝑢𝑡 of 60 V while delivering the power
required by the load. The nominal load current 𝐼𝐿𝑜𝑎𝑑 is 22 A. The input voltage 𝑈𝑖𝑛 is constant
at level 144 V, while the load resistance varies in the range [1.5, 5]Ω.
Conventionally the output voltage of the Buck Converter was controlled by a PI controller. In
the first plot below, the current 𝑖𝐿 in the inductor is shown, when the resistance in the load is
reduced from 5Ω to 1.5Ω, i. e. from upper bound to the lower bound of the possibly required
load resistance. The red curve represents the current in the inductor. Also the change in the
output voltage is depicted when changing the load resistance.

Figure 10.26: Inductor current vs. time

Figure 10.27: Output voltage vs. time

From Figure 10.26 and Figure 10.27 one can see that the current in the inductor has a high
overshoot and the output voltage has a relatively long settling time when a change in the load
resistance occures.
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Important: Some of the potential benefits of model predictive cotrol are the following
• Below it is shown that the size of the converter can be reduced by using a MPC controller

designed with FORCESPRO. With the MPC controller it will be possible to limit the cur-
rent in the inductor. With the warranty that the current does not exceed a certain upper
bound, a smaller inductor can be built in and the costs are reduced.

• Also the controller designed with FORCESPRO will calculate the optimal input at every
time step. The performance of the system is increased, i. e. less overshoot and faster
settling time.

10.6.5 Model Predictive Control Design via FORCESPRO MATLAB® Inter-
face

To design the FORCESPRO controller, the MPC setup has to be definded first. Below the re-
quirements are shown. A prediction horizon of 25 is choosen. In the cost function 𝑅 penalizes
the deviation of the input signal from its reference value. The matrix 𝑄 penalizes the deviation
of the states from its reference values. Notice that 𝑄 is defined such that a deviation of the in-
ductor current to its reference value is less penalized than a deviation of the output voltage to
its reference value. The input signal 𝑑 to the PWM is limited to [0, 1], while the inductor current
should not exceed a current of 42 A. This overshoot limitation concerns the average inductor
current. Below one can see, that this limit is exceeded by half of the currents peak-to-peak
value. The constraints are consistently defined with the model, i. e. a current reduction by -20
A and a current enhancement by 20 A is allowed at most. This is equivalent to a current in
the inductor in the range of [2, 42] A.

% MPC Setup
N = 25;
Q = [.01, 0; 0, 10];
R = 1;
nx = 2;
nu = 1;

% Constraints
umin = 0;
umax = 1;
xmin = -20;
xmax = 20;

Next, the multistage problem is formulated. In this example, there exists a linear term 𝑓 in
the cost function due to the variable load, i. e. the steady-state inductor current changes. The
cost function therefore reads as

(𝑥+ − 𝑥𝑟𝑒𝑓 )𝑇𝑄(𝑥+ − 𝑥𝑟𝑒𝑓 ) + (𝑢− 𝑢𝑟𝑒𝑓 )𝑇𝑅(𝑢− 𝑢𝑟𝑒𝑓 )

To solve the optimization problem, the reference values need to be re-calculated at every time
step. Below the parameters of the problem are marked red. The optimization variable of the
multistage problem is 𝑧𝑖 =

(︀
𝑢𝑖 𝑥𝑖+1

)︀𝑇 , where 𝑢 is the input signal given to the system.

minimize
𝑁∑︁
𝑖=1

1

2
𝑧𝑇𝑖 𝐻𝑖𝑧𝑖 + 𝑓𝑇

𝑖 𝑧𝑖 (separable objective)

subject to 𝐷1𝑧1 = 𝑐1 (initial equality)
𝐶𝑖−1𝑧𝑖−1 + 𝐷𝑖𝑧𝑖 = 𝑐𝑖 (inter-stage equality)
𝑧𝑖 ≤ 𝑧𝑖 ≤ 𝑧𝑖 (bounds)

In this example three parameters have to be given to the solver.
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• parameter(1): Represents the right hand side of the initial equality of the problem in
standard form above.

• parameter(2): The linear term 𝑓 of the cost function. This term contains the reference
values of the states which are calculated based on the resistance of the load.

• parameter(3): Represents the right hand side of the inter-stage equality constraint for
the stages 𝑖 = 2 : 𝑁 of the problem.

Next to the parameters, the dimensions of the variables, the equality constraints and the
bounds have to be defined. The values defined in the MPC setup are added to the multi-
stage problem in the section ‘cost’. The terms in the equality constraints which are constant
over all stages are defined in the section ‘equality constraints’. After defining the output of the
solver and the solver settings, the code for the controller can be generated.

%% Multistage Problem
% get stages struct of length N
stages = MultistageProblem(N);

% RHS of first eq. constr. is a parameter: stages(1).eq.c = -A*x0 - B2*w
parameter(1) = newParam('minusAx0_minusB2w',1,'eq.c');

% Linear Term depends on x_ref and u_ref
parameter(2) = newParam('Linear_Term',1:N,'cost.f');

% RHS of equality constraints for remaining stages: stages(i).eq.c = - B2*w
parameter(3) = newParam('minusB2w',2:N,'eq.c');

for i = 1:N

% dimension
stages(i).dims.n = nx+nu; % number of stage variables
stages(i).dims.r = nx; % number of equality constraints
stages(i).dims.l = 2; % number of lower bounds
stages(i).dims.u = 2; % number of upper bounds

% cost
tages(i).cost.H = blkdiag(R,Q);

% lower bounds
stages(i).ineq.b.lbidx = 1:2; % lower bound acts on these indices
stages(i).ineq.b.lb = [umin; xmin]; % lower bound on input u and state iL

% upper bounds
stages(i).ineq.b.ubidx = 1:2; % upper bound acts on these indices
stages(i).ineq.b.ub = [umax; xmax]; % upper bound on input u and state iL

% equality constraints
if( i < N )

stages(i).eq.C = [zeros(nx,nu), Ad];
end
stages(i).eq.D = [Bd1, -eye(nx)];

end

% define outputs of the solver
outputs(1) = newOutput('u0',1,1);

% solver settings
codeoptions = getOptions('DCDC_FORCES_Pro_Controller');

% generate code
generateCode(stages,parameter,codeoptions,outputs);
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You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

10.6.6 Simulation of the PLECS® Model with Model Predictive Control

After the code is generated, the FORCESPRO Simulink® block can be added to
the model DCDC_FORCES_Pro_viewer.slx as shown in the figure below (copy/paste
it from the file DCDC_FORCES_Pro_Controllercompact_lib.mdl in the folder
DCDC_FORCES_Pro_Controller/Interface generated by FORCESPRO).
The controller has a frequency of 100 kHz. To simulate the system with a time step of 1𝑒− 7𝑠,
rate transition blocks are used. Below the Simulink® model DC_DC_FORCES_Pro.slx with the
PLECS® circuit and the FORCESPRO controller is depicted.

In the grey box in the model depicted above, the three parameters which are the input to the
FORCESPRO controller, are calculated.

• parameter(1): The right hand side of the initial equality constraint is −𝐴𝑑 · 𝑥−𝐵𝑑2 · 𝑤.
• parameter(2): For the linear term of the cost function the reference values for the states

and the input signal need to be calculated.
The reference values are calculated by solving the linear system(︂

𝐴𝑑− 𝐼 𝐵𝑑1
𝐶𝑑2 𝐷𝑑3

)︂
·
(︂
𝑥𝑟𝑒𝑓

𝑢𝑟𝑒𝑓

)︂
=

(︂
−𝐵𝑑2 · 𝑤

𝑈𝑜𝑢𝑡,𝑟𝑒𝑓 −𝐷𝑑4 · 𝑤

)︂
which follows from the system equations in steady-state. To calculate the linear term f the
reference values are plugged into the linear term 𝑓 =

(︀
−𝑢𝑟𝑒𝑓 ·𝑅 −𝑥𝑇

𝑟𝑒𝑓 ·𝑄
)︀𝑇 , which is equal

to
𝑓 =

(︂
𝐴𝑑− 𝐼 𝐵𝑑1
𝐶𝑑2 𝐷𝑑3

)︂−1

·
(︂

0 −𝐵𝑑2
1 −𝐷𝑑4

)︂
·
(︂
𝑈𝑜𝑢𝑡,𝑟𝑒𝑓

𝑤

)︂
·
(︂

0 −𝑅
−𝑄 0

)︂
The matrices in the derivation above are explained in more detail in the system presented in
the code available for this example.

• parameter(3) is equal to −𝐵𝑑2 · 𝑤.

10.6.7 Comparison of Model Predictive Control and PI Control

In the Figure 10.28 and Figure 10.29 below the evolution of the inductor current and the out-
put voltage are compared when controlling the system with PI and with the MPC controller
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designed using FORCESPRO. It can be seen that the MPC controller is able to keep the in-
ductor current within the limits defined above. However, this limits the tracking speed of the
output voltage in the corresponding time interval. Overall, the tracking performance of the
output voltage is increased compared to the baseline PI controller.

Figure 10.28: Inductor current vs. time

Figure 10.29: Output voltage vs. time

10.7 High-level interface: Basic example

Consider the following linear MPC problem with lower and upper bounds on state and inputs,
and a terminal cost term:

minimize 𝑥⊤
𝑁𝑃𝑥𝑁 +

𝑁−1∑︁
𝑖=0

𝑥⊤
𝑖 𝑄𝑥𝑖 + 𝑢⊤

𝑖 𝑅𝑢𝑖

subject to 𝑥0 = 𝑥

𝑥𝑖+1 = 𝐴𝑥𝑖 + 𝐵𝑢𝑖

𝑥 ≤ 𝑥𝑖 ≤ �̄�

𝑢 ≤ 𝑢𝑖 ≤ �̄�

This problem is parametric in the initial state 𝑥 and the first input 𝑢0 is typically applied to the
system after a solution has been obtained.
You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

10.7.1 Defining the problem data

Let’s define the known data of the MPC problem, i.e. the system matrices 𝐴 and 𝐵, the pre-
diction horizon 𝑁 , the stage cost matrices 𝑄 and 𝑅, the terminal cost matrix 𝑃 , and the state
and input bounds:
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%% system
A = [1.1 1; 0 1];
B = [1; 0.5];
[nx,nu] = size(B);

%% MPC setup
N = 10;
Q = eye(nx);
R = eye(nu);
if( exist('dlqr','file') )

[~,P] = dlqr(A,B,Q,R);
else

P = 10*Q;
end
umin = -0.5; umax = 0.5;
xmin = [-5, -5]; xmax = [5, 5];

10.7.2 Defining the MPC problem

Let’s now dive in right into the problem formulation:

%% FORCES multistage form
% assume variable ordering zi = [ui; xi] for i=1...N

% dimensions
model.N = 11; % horizon length
model.nvar = 3; % number of variables
model.neq = 2; % number of equality constraints

% objective
model.objective = @(z) z(1)*R*z(1) + [z(2);z(3)]'*Q*[z(2);z(3)];
model.objectiveN = @(z) z(1)*R*z(1) + [z(2);z(3)]'*P*[z(2);z(3)];

% equalities
model.eq = @(z) [ A(1,:)*[z(2);z(3)] + B(1)*z(1);

A(2,:)*[z(2);z(3)] + B(2)*z(1)];

model.E = [zeros(2,1), eye(2)];

% initial state
model.xinitidx = 2:3;

% inequalities
model.lb = [ umin, xmin ];
model.ub = [ umax, xmax ];

10.7.3 Generating a solver

We have now populated model with the necessary fields to generate a solver for our problem.
Now we use the function FORCES_NLP to generate a solver for the problem defined by model
with the first state as a parameter:

%% Generate FORCES solver

% get options
codeoptions = getOptions('FORCESNLPsolver');
codeoptions.printlevel = 2;

(continues on next page)
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(continued from previous page)

% generate code
FORCES_NLP(model, codeoptions);

10.7.4 Calling the generated solver

Once all parameters have been populated, the MEX interface of the solver can be used to
invoke it:

problem.x0 = zeros(model.N*model.nvar,1);
problem.xinit = xinit;
[solverout,exitflag,info] = FORCESNLPsolver(problem);

Tip: Type help solvername to get more information about how to call the solver.

10.7.5 Simulation

Let’s now simulate the closed loop over the prediction horizon 𝑁 :

%% simulate
x1 = [-4; 2];
kmax = 30;
X = zeros(2,kmax+1); X(:,1) = x1;
U = zeros(1,kmax);
problem.x0 = zeros(model.N*model.nvar,1);
for k = 1:kmax

problem.xinit = X(:,k);

[solverout,exitflag,info] = FORCESNLPsolver(problem);

if( exitflag == 1 )
U(:,k) = solverout.x01(1);
solvetime(k) = info.solvetime;
iters(k) = info.it;

else
error('Some problem in solver');

end

%X(:,k+1) = A*X(:,k) + B*U(:,k);
X(:,k+1) = model.eq( [U(:,k);X(:,k)] )';

end

10.7.6 Results

The results of the simulation are presented in Figure 10.8. The plot on the top shows the
system’s states over time, while the plot on the bottom shows the input commands. We can
see that all constraints are respected.
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Figure 10.30: Simulation results of the states (top, in blue and red) and input (bottom, in blue)
over time. The state and input constraints are plotted in red dashed lines.
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10.8 High-level interface: Obstacle avoidance (MATLAB &
Python)

In this example we illustrate the simplicity of the high-level user interface on a vehicle optimal
trajectory generation problem. In particular, we use a simple vehicle model described by a
set of ordinary di�erential equations (ODEs):

�̇� = 𝑣 cos(𝜃)

�̇� = 𝑣 sin(𝜃)

�̇� = 𝐹/𝑚

𝜃 = 𝑠/𝐿

The model consists of four di�erential states: 𝑥 and 𝑦 are the Cartesian coordinates of the car,
𝑣 is the linear velocity and 𝜃 is the heading angle. Next, there are two control inputs to the
model: the acceleration force 𝐹 and the steering torque 𝑠. The two parameters are the car
mass 𝑚 = 1 kg and the wheel base which we assume to be 𝐿 = 1 m.
The trajectory of the vehicle will be defined as an NLP. First, we define stage variable 𝑧 by
stacking the input and di�erential state variables:

𝑧 = [𝐹, 𝑠, 𝑥, 𝑦, 𝑣, 𝜃]⊤

You can find the code of this example to try it out for yourself in the examples folder that
comes with your client.

10.8.1 Defining the problem data

Objective

In this example the cost function is the same for all stages. We want to maximize progress in
the 𝑦 direction, with quadratic penalties on the inputs 𝐹 and 𝑠, i.e.:

𝑓(𝑧) = −100𝑧4 + 0.1𝑧21 + 0.01𝑧22

The stage cost function is coded in MATLAB as the following function:
Matlab
Python

function f = objective( z )
F = z(1);
s = z(2);
y = z(4);
f = -100*y + 0.1*F^2 + 0.01*s^2;

end

model.objective = lambda z: -100 * z[3] + 0.1 * z[0]**2 + 0.01 * z[1]**2

Matrix equality constraints

The matrix equality constraints in this example represent only the discretized dynamic equa-
tions of the vehicle using an explicit Runge-Kutta integrator of order 4. The vehicle dynamics
defi ned above are represented by a function continuous_dynamics and the NLP constraint
function 𝑐(·) as the function dynamics. Note that the function RK4 is included in the FORCE-
SPRO client software.
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Matlab
Python

function xdot = continuous_dynamics(x, u)
F = u(1);
s = u(2);
v = x(3);
theta = x(4);
m = 1;
L = 1;
xdot = [v * cos(theta);

v * sin(theta);
F / m;
s / L];

end

function xnext = dynamics(z)
x = z(3:6);
u = z(1:2);
% implements a RK4 integrator for the dynamics
integrator_stepsize = 0.1;
xnext = RK4(x, u, @continuous_dynamics, integrator_stepsize);

end

# Dynamics, i.e. equality constraints
def continuous_dynamics(x, u):

m, I = 1, 1 # physical constants of the model
return np.array([x[2] * casadi.cos(x[3]), # v*cos(theta)

x[2] * casadi.sin(x[3]), # v*sin(theta)
u[0] / m, # F/m
u[1] / I]) # (v*s)/L

# We use an explicit RK4 integrator here to discretize continuous dynamics
integrator_stepsize = 0.1
model.eq = lambda z: forcespro.nlp.integrate(continuous_dynamics, z[2:6], z[0:2],

integrator=forcespro.nlp.integrators.
→˓RK4,

stepsize=integrator_stepsize)
# Indices on LHS of dynamical constraint - for efficiency reasons, make
# sure the matrix E has structure [0 I] where I is the identity matrix.
model.E = np.concatenate([np.zeros((4,2)), np.eye(4)], axis=1)

Inequality constraints

The maneuver is subjected to a set of constraints, involving both the simple bounds:

−5 N ≤𝐹 ≤ 5 N

−1 Nm ≤𝑠 ≤ 1 Nm

−3 m ≤𝑥 ≤ 0 m

0 m ≤𝑦 ≤ 3 m

0 m/s ≤𝑣 ≤ 2 m/s

0 rad ≤𝜃 ≤ 𝜋 rad

as well the nonlinear nonconvex constraints:

1 m2 ≤𝑥2 + 𝑦2 ≤ 9 m2

0.9025 m2 ≤(𝑥 + 2)2 + (𝑦 − 2.5)2
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In this case, the nonlinear constraint function ℎ(·) can be coded in MATLAB/Python as follows:
Matlab
Python

function h = inequalities(z)
x = z(3);
y = z(4);
h = [x^2 + y^2;

(x +2)^2 + (y -2.5)^2 ];
end

# General (differentiable) nonlinear inequalities hl <= h(x) <= hu
model.ineq = lambda z: np.array([z[2] ** 2 + z[3] ** 2,

(z[2] + 2) ** 2 + (z[3] - 2.5) ** 2])

# Upper/lower bounds for inequalities
model.hu = np.array([9, +np.inf])
model.hl = np.array([1, 0.95 ** 2])

Initial and final conditions

The goal of the maneuver is to steer the vehicle from a set of initial conditions:

𝑥init = −2 m, 𝑦init = 0 m, 𝑣init = 0 m/s, 𝜃init = 2.0944 rad

to another point in the state-space subjected to the final conditions:

𝑣final = 0 m/s, 𝜃final = 0 rad

10.8.2 Defining the MPC problem

With the above de fined MALTAB functions for objective, matrix equality and inequality func-
tions, we can completely define the NLP formulation in the next code snippet. For this exam-
ple, we chose to use 𝑁 = 50 stages in the NLP:
Matlab
Python

%% Problem dimensions
model.N = 50; % horizon length
model.nvar = 6; % number of variables
model.neq = 4; % number of equality constraints
model.nh = 2; % number of inequality constraint functions

%% Objective function
model.objective = @objective;

%% Matrix equality constraints
model.eq = @dynamics;
model.E = [zeros(4, 2), eye( 4 )];

%% Inequality constraints
% upper/lower bounds lb <= z <= ub
model.lb = [-5, -1, -3, 0, 0, 0 ];
model.ub = [+5, +1, 0, 3, 2, +pi];

(continues on next page)
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% Nonlinear inequalities hl <= h(z) <= hu
model.ineq = @inequalities;
model.hu = [9, +inf]';
model.hl = [1, 0.95^2]';

%% Initial and final conditions
model.xinit = [-2, 0, 0, deg2rad(120)]';
model.xinitidx = 3:6;
model.xfinal = [0, deg2rad(0)]';
model.xfinalidx = 5:6;

# Problem dimensions
model = forcespro.nlp.SymbolicModel()
model.N = 50 # horizon length
model.nvar = 6 # number of variables
model.neq = 4 # number of equality constraints
model.nh = 2 # number of inequality constraint functions

# Inequality constraints
# Simple bounds
# upper/lower variable bounds lb <= x <= ub
# inputs | states
# F s x y v theta
model.lb = np.array([ -5, -1, -3, 0, 0, 0])
model.ub = np.array([ +5, +1, 0, 3, 2, +np.pi])

# Initial and final conditions
# Initial condition on vehicle states
xinit = np.array([-2, 0, 0, np.deg2rad(120)]) # x=-2, y=0, v=0 (standstill),
→˓heading angle=120? # transposed
model.xinitidx = range(2,6) # use this to specify on which variables initial
→˓conditions are imposed

# Final condition on vehicle velocity and heading angle
xfinal = np.array([0, np.deg2rad(0)]) # v final=0 (standstill), heading angle
→˓final=0? # transposed
model.xfinalidx = range(4, 6) # use this to specify on which variables final
→˓conditions are imposed

10.8.3 Generating a solver

We have now populated model with the necessary fields to generate a solver for our problem.
Now we set some options for our solver and then use the function FORCES_NLP to generate a
solver for the problem defined by model with the first state as a parameter:
Matlab
Python

%% Define solver options
codeoptions = getOptions('FORCESNLPsolver');
codeoptions.maxit = 200; % Maximum number of iterations
codeoptions.printlevel = 2; % Use printlevel = 2 to print progress (but not for
→˓timings)
codeoptions.optlevel = 0; % 0: no optimization, 1: optimize for size, 2:
→˓optimize for speed, 3: optimize for size & speed
codeoptions.cleanup = false;
codeoptions.timing = 1;
codeoptions.printlevel = 0;

(continues on next page)
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%% Generate forces solver
FORCES_NLP(model, codeoptions);

# Set solver options
codeoptions = forcespro.CodeOptions('FORCESNLPsolver')
codeoptions.maxit = 200 # Maximum number of iterations
codeoptions.printlevel = 2 # Use printlevel = 2 to print progress (but not for
→˓timings)
codeoptions.optlevel = 0 # 0 no optimization, 1 optimize for size, 2 optimize for
→˓speed, 3 optimize for size & speed

# Creates code for symbolic model formulation given above, then contacts server to
→˓generate new solver
solver = model.generate_solver(codeoptions)

10.8.4 Calling the generated solver

Once all parameters have been populated, the MEX interface of the solver can be used to
invoke it:
Matlab
Python

%% Call solver
% Set initial guess to start solver from:
x0i=model.lb+(model.ub-model.lb)/2;
x0=repmat(x0i',model.N,1);
problem.x0=x0;

% Set initial and final conditions. This is usually changing from problem
% instance to problem instance:
problem.xinit = model.xinit;
problem.xfinal = model.xfinal;

% Time to solve the NLP!
[output,exitflag,info] = FORCESNLPsolver(problem);

% Make sure the solver has exited properly.
assert(exitflag == 1,'Some problem in FORCES solver');
fprintf('\nFORCES took %d iterations and %f seconds to solve the problem.\n',info.
→˓it,info.solvetime);

# Set initial guess to start solver from:
x0i = (model.lb + model.ub) / 2.0
x0 = np.transpose(np.tile(x0i, (1, model.N)))

problem = {"x0": x0,
"xinit": xinit,
"xfinal": xfinal}

# Time to solve the NLP!
output, exitflag, info = solver.solve(problem)

# Make sure the solver has exited properly.
assert exitflag == 1, "bad exitflag"
print("FORCES took {} iterations and {} seconds to solve the problem.".format(info.
→˓it, info.solvetime))
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10.8.5 Results

The goal is to find a trajectory that steers the vehicle from point A to another standstill point
while avoiding obstacles and maximizing the progress on the y-direction along the way. The
trajectory should also be feasible with respect to the vehicle dynamics and its safety and
physical limitations. The vehicle’s trajectory in 2D space is presented in Figure 10.31.
The vehicle’s velocity and steering angle over time is presented in Figure 10.32, and the actuator
commands in Figure 10.33. One can see that all constraints are respected.

-2.5 -2 -1.5 -1 -0.5 0
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Figure 10.31: Vehicle’s trajectory in 2D space.

10.8.6 Variation 1: Parameters

One possible variation is if we consider the mass 𝑚 and wheel base 𝐿 as parameters, so that
we can tune them after the code generation. First we define the number of parameters:
Matlab
Python

for i=1:model.N-1
model.npar(i) = 2; % number of parameters

end
model.npar(model.N) = 0; % no parameters in the last stage

model.npar = 2
model.nparN = 0

and then include them into our dynamics function handles:
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Figure 10.32: Vehicle’s velocity and steering angle over time.
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Figure 10.33: Vehicle’s actuator commands over time.
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Matlab
Python

function xdot = continuous_dynamics(x, u, p)
F = u(1);
s = u(2);
v = x(3);
theta = x(4);
m = p(1);
L = p(2);
xdot = [v * cos(theta);

v * sin(theta);
F / m;
s / L];

end

function xnext = dynamics(z, p)
x = z(3:6);
u = z(1:2);
% implements a RK4 integrator for the dynamics
integrator_stepsize = 0.1;
xnext = RK4(x, u, @continuous_dynamics, integrator_stepsize, p);

end

# Dynamics, i.e. equality constraints
def continuous_dynamics(x, u, p):

m = p[0]
I = p[1]
return np.array([x[2] * casadi.cos(x[3]), # v*cos(theta)

x[2] * casadi.sin(x[3]), # v*sin(theta)
u[0] / m, # F/m
u[1] / I]) # (v*s)/L

# We use an explicit RK4 integrator here to discretize continuous dynamics
integrator_stepsize = 0.1
model.eq = lambda z, p: forcespro.nlp.integrate(continuous_dynamics, z[2:6],
→˓z[0:2], p,

integrator=forcespro.nlp.
→˓integrators.RK4,

stepsize=integrator_stepsize)

Note that we have to provide these parameters through the problem struct before calling the
generated solver:
Matlab
Python

% Set parameters
problem.all_parameters = repmat([1 1]',model.N-1,1);

m = 1
I = 1
problem = {"x0": np.reshape(x0, -1),

"xinit": xinit,
"all_parameters": np.tile(np.array([m, I]), model.N-1)}

You can find the code of this example to try it out for yourself in the examples folder that
comes with your client.
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10.8.7 Variation 2: Di�erent integrator

Another possible variation is if we want to change the integrator that is used to discretize the
continuous-time dynamics. In the example above, we discretized our dynamics ourselves by
using the supplied RK4 function. It is also possible to give the continuous-time dynamics to
the solver generator by using the continuous_dynamics field and varying the codeoptions.
nlp fields:
Matlab
Python

% use continuous-time dynamics
codeoptions.continuous_dynamics = @continuous_dynamics;

% define integrator options
codeoptions.nlp.integrator.type = 'IRK4'; % can also be 'ForwardEuler', 'ERK2',
→˓'ERK3', 'ERK4', 'BackwardEuler', or 'IRK2'
codeoptions.nlp.integrator.Ts = 0.1;
codeoptions.nlp.integrator.nodes = 10;

# continuous dynamics will be integrated according to codeoptions.integrator
→˓settings
model.continuous_dynamics = continuous_dynamics

# Integration options
codeoptions.nlp.integrator.type = "IRK4"
codeoptions.nlp.integrator.Ts = 0.1
codeoptions.nlp.integrator.nodes = 10

For more information regarding the di�erent integrators available, see Integrators.
You can find the code of this example to try it out for yourself in the examples folder that
comes with your client.

10.8.8 Variation 3: Terminal cost

Another possible variation is if we want to have a terminal cost that is di�erent than the stage
costs of the horizon. To do that we provide each cost function handle in a cell array as follows:
Matlab
Python

%% Objective function
% In this example, we want to penalize the inputs F and s:
for i=1:model.N-1

model.objective{i} = @(z) 0.1*z(1)^2 + 0.01*z(2)^2;
end

% and maximize the progress on the y direction, while ensuring a small
% velocity and heading angle at the end of the horizon.
% Terminal cost: -100*y 100*v^2 + 100*theta^2 to aim for max y, v=0 and theta=0
model.objective{model.N} = @(z) -100*z(4) + 10*(z(5)-0)^2 + 10*(z(6)-0)^2;

# Objective function
# In this example, we want to penalize the inputs F and s:
model.objective = lambda z: 0.1*z[0]**2 + 0.01*z[1]**2

# and maximize the progress in the y direction, while ensuring a small

(continues on next page)
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# velocity and heading angle at the end of the horizon:
model.objectiveN = lambda z: -100*z[3] + 10*(z[4]-0)**2 + 10*(z[5]-0)**2

You can find the code of this example to try it out for yourself in the examples folder that
comes with your client.

10.8.9 Variation 4: External functions

One final variation is if we supply the required functions through external functions in C. To
do so we have to provide the directory that contains said source files in the MATLAB code:

%% Define source file containing function evaluation code
model.extfuncs = 'C/myfevals.c';

We also need to include the two extern functions car_dyanmics and
car_dyanmics_jacobian, both contained in the car_dynamics.c file, through the
other_srcs options field:

% add additional source files required - separate by spaces if more than 1
codeoptions.nlp.other_srcs = 'C/car_dynamics.c';

In Python, we need to switch to an ExternalFunctionModel if we intend to use external call-
backs. We give the main callback evaluating the objective function, equality constraints and
inequality constraints, using the set_main_function() , and supply any additional files required
by this callback using add_auxiliary().

model = forcespro.nlp.ExternalFunctionModel()

# Define source file containing function evaluation code
# the 'relative_to' argument specifies that the paths are to be understood
# relative to this file's location. if not supplied, paths are relative to the
# current working directory in which this script is executed.
model.set_main_callback('c/myfevals.c', relative_to=os.path.dirname(__file__))
model.add_auxiliary('c/car_dynamics.c', relative_to=os.path.dirname(__file__))

You can find the code of this example to try it out for yourself in the examples folder that
comes with your client.
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10.9 High-level interface: Indoor localization (MATLAB &
Python)

The indoor localization problem is to estimate the position of a target by measurements from
various anchors with known location. Outdoors, this well known as GPS, while indoors other
frequency bands (and less accurate clocks) are usually used. In this example, we show how to
generate code for a position estimator that relies on time-of-flight (TOF) measurements (GPS
uses time-di�erence-of-arrival, TDOA). The latter can be easily implemented with FORCESPRO
as well with only minor changes to the code below.

Figure 10.34: Indoor localization example GUI.

You can find the code of this example to try it out for yourself in the examples folder that
comes with your client.
Running the code will produce an interactive window like in Figure 10.34.
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10.9.1 Time of flight measurements

Given 𝑁 anchors with known positions (𝑥𝑎
𝑖 , 𝑦

𝑎
𝑖 ), 𝑖 = 1, . . . , 𝑁 , the distance to the target with

unknown position (𝑥, 𝑦) is given by:

𝑑𝑖 = 𝑐𝑡𝑖 =
√︁

(𝑥− 𝑥𝑎
𝑖 )2 + (𝑦 − 𝑦𝑎𝑖 )2

where 𝑡𝑖 is the time the signal from anchor 𝑖 travels at the speed 𝑐 = 299 792 458 m/s

10.9.2 Estimation error

Instead of the real distance, we work with squared distances to define the estimation error:

𝑒𝑖 = (𝑥− 𝑥𝑎
𝑖 )2 + (𝑦 − 𝑦𝑎𝑖 )2 − 𝑑2𝑖

10.9.3 Minimize the error

The objective is a least-squares error function:

min
𝑥,𝑦

𝑁∑︁
𝑖=1

𝑒2𝑖

10.9.4 Implementation

The following Matlab/Python code generates C-code for implementing an optimizer for min-
imizing the least-squares error function from above. It takes the anchor positions and the
distance measurements, and returns the estimated position of the target.
Matlab
Python

%% This function generates the estimator
function generateEstimator(numberOfAnchors,xlimits,ylimits)
% Generates 2D decoding code for localization using FORCES NLP
% na: number of anchors

global na
na = numberOfAnchors;

%% NLP problem definition
% no need to change anything below
model.N = 1; % number of distance measurements
model.nvar = 2; % number of variables (use 3 if 3D)
model.npar = numberOfAnchors*3; % number of parameters: coordinates of anchors

→˓in 2D, plus measurements
model.objective = @objective;
model.lb = [xlimits(1) ylimits(1)]; % lower bounds on (x,y)
model.ub = [xlimits(2) ylimits(2)]; % upper bounds on (x,y)

%% codesettings
codesettings = getOptions('localizationDecoder');
codesettings.printlevel = 0; % set to 2 to see some prints
% codesettings.server = 'http://winner10:2470';
codesettings.maxit = 50; % maximum number of iterations

%% generate code

(continues on next page)
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(continued from previous page)
FORCES_NLP(model, codesettings);

end

%% This function implements the objective
% We assume that the parameter vector p is ordered as follows:
% p(1:na) - x-coordinates of the anchors
% p(na+(1:na)) - y-coordinates of the anchors
% p(2*na+(1:na)) - distance measurements of the anchors
function obj = objective( z,p )
global na
obj=0;
for i = 1:na

obj = obj + ( (p(i)-z(1))^2 + (p(i+na)-z(2))^2 - p(i+2*na)^2 )^2;
end

end

def generate_estimator(number_of_anchors, xlimits, ylimits):
"""
Generates and returns a FORCESPRO solver that esimates a position based on
noisy measurement inputs.
"""

# NLP problem definition
# ----------------------

model = forcespro.nlp.SymbolicModel(1) # number of distance measurements
model.nvar = 2 # number of variables (use 3 if 3D)
model.npar = number_of_anchors * 3 # number of parameters: coordinates of

→˓anchors in 2D, plus measurements
model.objective = objective # objective is defined as it's own function below
model.lb = np.array([xlimits[0], ylimits[0]]) # lower bounds on (x,y)
model.ub = np.array([xlimits[1], ylimits[1]]) # upper bounds on (x,y)

# FORCESPRO solver settings
# --------------------------

codesettings = forcespro.CodeOptions()
codesettings.printlevel = 0 # set to 2 to see some prints
codesettings.maxit = 50 # maximum number of iterations

# Generate a solver
# -----------------
solver = model.generate_solver(codesettings)

return solver

def objective(z, p):
"""
This function implements the objective to be minimized.

We assume that the parameter vector p is ordered as follows:

- p[0:(na-1)] - x-coordinates of the anchors
- p[na:(2*na-1)] - y-coordinates of the anchors
- p[(2*na):(3*na-1)] - distance measurements of the anchors

"""
obj = 0
for i in range(n):

obj += ((p[i] - z[0])**2 + (p[i + n] - z[1])**2 - p[i + 2*n]**2)**2
return obj

(continues on next page)
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(continued from previous page)

def distance(xa, xtrue, ya, ytrue):
return np.sqrt((xa - xtrue)**2 + (ya - ytrue)**2)

164 Chapter 10. Examples



FORCESPRO User Manual

10.10 Real-time SQP Solver: Robotic Arm Manipulator (MAT-
LAB & Python)

In this example we illustrate the use of the real-time Sequential Quadratic Programming (SQP)
solver. In particular, we use a robotic arm manipulator described by a set of ordinary di�eren-
tial equations (ODEs):

𝜃1 = 𝛾

𝜃2 =
1

𝛽2
(𝜏2 − 𝛽1𝛾 − 𝛽3𝜃

2
1 − 𝛽4)

𝜏1 = 𝑢1

𝜏2 = 𝑢2

where 𝜃1, 𝜃2 are joint angles modelling the manipulator configuration, 𝑢1, 𝑢2 are the rates (in-
puts) of the torques 𝜏1, 𝜏2 applied to the joints and

𝛾 =̂
1

𝛼1 − 𝛼2
𝛽1

𝛽2

(
𝛼2

𝛽2
(𝛽4 + 𝛽3𝜃

2
1 − 𝜏2) − 𝛼3𝜃1𝜃2 − 𝛼4𝜃2 − 𝛼5 + 𝜏1).

The coe�cients 𝛼1, 𝛼2, 𝛼3, 𝛼4, 𝛼5 and 𝛽1, 𝛽2, 𝛽3, 𝛽4 depend on the inertia and mass of the robot
arm components. Their expressions can be found in [SicSci09]. The optimal control problem
is formalized from the state 𝑥 defined by

𝑥 =̂ (𝜃1, 𝜃1, 𝜃2, 𝜃2, 𝜏1, 𝜏2)⊤

and the input 𝑢 defined as

𝑢 =̂ (𝜏1, 𝜏2)⊤.

The control objective is to make the first joint angle 𝜃1 follow a reference of 1.2 rad from 0 to
10 s and −1.2 rad from 10 to 20 s. Similarly, the second joint angle 𝜃2 should follow a reference
of −1.2 rad from 0 to 10 s and 1.2 rad from 10 to 20 s. The stage variable 𝑧 is defined by stacking
the input and di�erential state variables:

𝑧 = (𝜏1, 𝜏2, 𝜃1, 𝜃1, 𝜃2, 𝜃2, 𝜏1, 𝜏2)⊤

You can find the code of this example to try it out for yourself in the examples folder that
comes with your client.

10.10.1 Defining the MPC problem

Tracking objective

Our goal is to minimize the distance of the joint angles to the reference, which can be trans-
lated in the following stage cost function:

𝑓(𝑧, 𝑝) = 1000(𝑧3 − 1.2𝑝)2 + 0.1𝑧24 + 1000(𝑧5 + 1.2𝑝)2 + 0.1𝑧26 + 0.01𝑧27 + 0.01𝑧28 + 0.01𝑧21 + 0.01𝑧22 ,

where 𝑝 is a run-time parameter taking value 1 from 0 to 10 s and −1 from 10 to 20 s.
The stage cost function is coded in MATLAB as the least-squares vector:
Matlab
Python
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model.LSobjective = @(z,p)[sqrt(1000) * (z(3)-p(1)*1.2);...
sqrt(0.1) * z(4);...
sqrt(1000) * (z(5)+p(1)*1.2);...
sqrt(0.1) * z(6);...
sqrt(0.01) * z(7);...
sqrt(0.01) * z(8);...
sqrt(0.01) * z(1);...
sqrt(0.01) * z(2)];

model.objective = lambda z, p: ( 1000 * (z[2] - p[0]*1.2)**2
+ 0.1 * z[3]**2
+ 1000 * (z[4] + p[0]*1.2)**2
+ 0.10 * z[5]**2
+ 0.01 * z[6]**2
+ 0.01 * z[7]**2
+ 0.01 * z[0]**2
+ 0.01 * z[1]**2)

In the MATLAB example, this is needed to compute a Gauss-Newton approximation from the
Jacobian of the least-squares vector. In the Python example, where Gauss-Newton approxi-
mations are not yet available, we use the objective field to supply the target function.

State and input constraints

The following constraints are imposed on the torques and torque rates:

−100 Nm ≤𝜏1 ≤ 70 Nm

−100 Nm ≤𝜏2 ≤ 70 Nm

−200 Nm/s ≤𝜏1 ≤ 200 Nm/s

−200 Nm/s ≤𝜏2 ≤ 200 Nm/s

This corresponds to the code below.
Matlab
Python

% upper/lower variable bounds lb <= x <= ub
model.lb = [ -200, -200, -pi, -100, -pi, -100, -100, -100 ];
model.ub = [ 200, 200, pi, 100, pi, 100, 70, 70 ];

# Upper/lower variable bounds lb <= x <= ub
# Inputs | States
# dtau1 dtau2 theta1 dtheta1 theta2 dtheta2 tau1 tau2
model.lb = np.array([ -200, -200, -np.pi, -100, -np.pi, -100, -100, -100])
model.ub = np.array([ 200, 200, np.pi, 100, np.pi, 100, 70, 70])

Initial condition and horizon length

The prediction horizon is set to 21 and the following initial condition is set
Matlab
Python

model.xinit = [-0.4 0 0.4 0 0 0 ]';
model.xinitidx = 3:8;
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xinit = np.array([-0.4, 0, 0.4, 0, 0, 0])
model.xinitidx = range(2, 8)

10.10.2 Generating a real-time SQP solver

We have now populated model with the necessary fields to generate an SQP solver, which
requires settings a few options, as follows:
Matlab
Python

%% Define solver options
codeoptions = getOptions('RobotArmSolver');
codeoptions.maxit = 200; % Maximum number of
→˓iterations of inner QP solver
codeoptions.printlevel = 0; % Use printlevel = 2
→˓to print progress (but not for timing)
codeoptions.optlevel = 3;
% Explicit Runge-Kutta 4 integrator
codeoptions.nlp.integrator.Ts = integrator_stepsize;
codeoptions.nlp.integrator.nodes = 5;
codeoptions.nlp.integrator.type = 'ERK4';
% Options for SQP solver
codeoptions.solvemethod = 'SQP_NLP'; % SQP algorithm
codeoptions.nlp.hessian_approximation = 'gauss-newton'; % Gauss-Newton hessian
→˓approximation of nonlinear least-squares objective
codeoptions.sqp_nlp.use_line_search = 0; % Disable line-search
→˓for efficiency (only doable with Gauss-Newton approximation)

%% Generate real-time SQP solver
FORCES_NLP(model, codeoptions);

# Define solver options
codeoptions = forcespro.CodeOptions()
codeoptions.maxit = 200 # Maximum number of
→˓iterations
codeoptions.printlevel = 0 # Use printlevel = 2 to
→˓print progress (but not for timings)
codeoptions.optlevel = 3 # 0 no optimization, 1
→˓optimize for size, 2 optimize for speed, 3 optimize for size & speed
codeoptions.nlp.integrator.Ts = integrator_stepsize
codeoptions.nlp.integrator.nodes = 5
codeoptions.nlp.integrator.type = 'ERK4'
codeoptions.solvemethod = 'SQP_NLP'
codeoptions.sqp_nlp.rti = 1
codeoptions.sqp_nlp.maxSQPit = 1

# Generate real-time SQP solver
solver = model.generate_solver(codeoptions)

The number of solved QPs in every iteration is set via sqp_nlp.maxSQPit. It is important
to note that disabling the line search in the SQP algorithm does not guarantee global con-
vergence and hence may result in less robust performance, but produces much faster solve
times. Turning o� the line search via sqp_nlp.use_line_search is only allowed when the
Gauss-Newton approximation is on.
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10.10.3 Calling the generated SQP solver

Once all parameters have been populated, the MEX interface of the solver can be used to
invoke it from MATLAB, or the Python Solver class can be used to use it from within Python:
Matlab
Python

% Set primal initial guess
x0i = model.lb+(model.ub-model.lb)/2;
x0 = repmat(x0i',model.N,1);
problem.x0 = x0;

% Set reference as run-time parameter
problem.all_parameters = ones(model.N,1);

% Set initial condition
problem.xinit = X(:,i);

% Call SQP solver
[output, exitflag, info] = RobotArmSolver(problem);

# Set solver parameters
x0i = (model.ub + model.lb) / 2
x0 = np.tile(x0i, (1, model.N))
problem = {"x0": x0, # Primal initial guess to start solver from

"xinit": xinit, # Initial condition
"all_parameters": np.ones((model.N, 1))} # Reference as a real-time

→˓parameter

# Call SQP solver
output, exitflag, info = solver.solve(problem)

The RobotArmSolver is expected to return an exitflag equal to 1, which corresponds to a
successful solver. However, note that the QP could become infeasible in some cases. In this
case, one should expect an exitflag of −8.

10.10.4 Results

The control objective is to track the joint references of −1.2 rad and 1.2 rad respectively, while
keeping the input torque rates below 200 Nm/s in magnitude and the torque states between
−100 N and 70 Nm.
The joint angle and torques trajectories are shown in Figure Figure 10.35 and Figure Figure
10.36 respectively, while the input torque rates are plotted in Figure Figure 10.37. The closed-
loop objective, which is a measure of the control performance is shown in Figure Figure 10.38.
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Figure 10.35: Manipulator’s joint angle.

Figure 10.36: Manipulator’s torques at joints.
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Figure 10.37: Manipulator’s torque rates.

Figure 10.38: Manipulator’s closed loop objective.
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10.11 Controlling a DC motor using a FORCESPRO SQP solver

In this example our aim is to control a DC-motor using a FORCESPRO SQP solver. The model
for the DC motor which we consider is borrowed from [BerUnb], to which we refer for further
details. The dynamics of our model is described by the following set of ordinary di�erential
equations:

�̇�1(𝑡) = −𝑅𝑎

𝐿𝑎
𝑥1(𝑡) − 𝑘𝑚

𝐿𝑎
𝑢(𝑡)𝑥2(𝑡) +

𝑢𝑎

𝐿𝑎

�̇�2(𝑡) = −𝐵

𝐽
𝑥2(𝑡) +

𝑘𝑚
𝐽

𝑢(𝑡)𝑥1(𝑡) − 𝜏𝑙
𝐽
.

The states 𝑥1 and 𝑥2 model the armature current and motor angular speed of out DC motor
respectively and the control 𝑢 models the input field current. The following values are chosen
for our model constants

𝑅𝑎 = 12.548Ω (armature resistance)
𝐿𝑎 = 0.307H (armature inductance)
𝑘𝑚 = 0.23576Nm/A2 (motor constant)
𝑢𝑎 = 60V (armature voltage)
𝐵 = 0.00783Nmsec (total viscuous damping)
𝜏𝐿 = 1.47Nmsec (Load torque)
𝐽 = 0.00385Nmsec2 (total moment of inertia)

The control objective is to track a piecewise constant angular speed. To test the robustness of
out resulting controller we switch reference half way through our simulation. In the first half
of the simulation we will track a constant angular speed 𝑥𝑟𝑒𝑓1

2 = 2 and then switch to tracking
a constant angular speed 𝑥𝑟𝑒𝑓2

2 = −2. We collect the 2-dimensional state vector 𝑥 = (𝑥1, 𝑥2)𝑇

and the 1-dimensional control 𝑢 in the vector

𝑧 =

⎛⎝ 𝑢
𝑥1

𝑥2

⎞⎠
You can find the Matlab code below for this example to try it out for yourself in the examples
folder that comes with your client.

10.11.1 Defining the MPC problem

The tracking objective function

Since we want to track a reference value it is natural to consider a least squared cost 𝑓(𝑧, 𝑝) =
||𝑟(𝑧,𝑝)||2

2 for

𝑟(𝑧, 𝑝) = 𝑧3 − 𝑝

Recall that 𝑧3 = 𝑥2 models the motor angular speed which is made to track a piecewise
constant reference. The parameter 𝑝 will be equal to 𝑥𝑟𝑒𝑓1

2 during the first half of the simulation
and equal to 𝑥𝑟𝑒𝑓2

2 during the second.
The following code snippet reads in the least squared objective

model.LSobjective = @(z,p) sqrt(100) * (z(3) - p);
model.LSobjectiveN = @(z,p) sqrt(100) * (z(3) - p);
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The dynamics

The following code snippet reads in the dynamics (10.11) of our model:

%% model parameters
% Armature inductance (H)
La = 0.307;
% Armature resistance (Ohms)
Ra = 12.548;
% Motor constant (Nm/A^2)
km = 0.23576;
% Total moment of inertia (Nm.sec^2)
J = 0.00385;
% Total viscous damping (Nm.sec)
B = 0.00783;
% Load torque (Nm)
tauL = 1.47;
% Armature voltage (V)
ua = 60;

model.E = [zeros(2,1), eye(2)];
model.continuous_dynamics = @(x,u) [(-1/La)*(Ra*x(1) + x(2)*u(1) - ua);...

(-1/J)*(B*x(2) - km*x(1)*u(1) + tauL)];

Input and state constraints

The following constraints are to be met by out control and state vectors:

1A ≤ 𝑢 ≤ 1.6A
−5A ≤ 𝑥1 ≤ 5A

−10 rad
sec ≤ 𝑥2 ≤ 10 rad

sec

This can be read into the FORCESPRO model as follows

model.lb = [1, -5, -10];
model.ub = [1.6, 5, 10];

Generating the FORCESPRO SQP solver

To generate a suitable SQP solver for out MPC problem one need a model struct as well as
a codeoptions struct. Our model struct has been populated above and we now specify the
codeoptions we want and generating the solver by calling FORCES_NLP. The following code-
snippet shows how this can be done:

%% set codeoptions
codeoptions = getOptions('FORCESPROSolver');
codeoptions.solvemethod = 'SQP_NLP'; % generate SQP solver
codeoptions.nlp.integrator.type = 'ERK4';
codeoptions.nlp.integrator.Ts = 0.01;
codeoptions.nlp.integrator.nodes = 1;
codeoptions.nlp.hessian_approximation = 'gauss-newton';
codeoptions.server = 'https://forces.embotech.com';

%% generate FORCESPRO solver
FORCES_NLP(model, codeoptions);
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Calling the solver

Once the solver has been generated it needs a struct containing an initial guess, initial con-
dition of the ODE, the run-time parameters and the reinitialize field as explained in Se-
quential quadratic programming algorithm. The following code-snippet shows how this can
be done:

% populate run time parameters struct
params.all_parameters = repmat(2, model.N, 1);
params.xinit = zeros(model.neq, 1); % initial condition to ODE
params.x0 = repmat([1.2;zeros(2,1)], model.N, 1); % initial guess
params.reinitialize = 0;

% Solve optimization problem
[output, exitflag, info] = FORCESPROSolver(params);

The FORCESPROSolver is expected to return an exitflag equal to 1, which corresponds to
a successful solve. However, note that the QP could become infeasible in some cases. In this
case, one should expect an exitflag equal to −8.

Results

The control objective is to track an angular speed of 2 and -2 respectively. As can be seen in
Figure 10.43 the controller completes this task. The control (𝑢) is plotted in Figure 10.39, the
first state (𝑥1) is plotted in Figure 10.40 and second state (𝑥2) in Figure 10.41. As a measure of
control quality, the closed loop objective value is plotted in Figure 10.42.

Figure 10.39: The control (𝑢, in blue) as a function of simulation time (s). The control obeys its
constraints (red) throughout the simulation.
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Figure 10.40: The first state (𝑥1, in blue) as a function of simulation time. It obeys its constraints
(red) throughout the simulation.

Figure 10.41: The second state (𝑥2, in blue) as a function of simulation time. It obeys its con-
straints (red) throughout the simulation.
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Figure 10.42: Closed-loop objective value as a function of time

Figure 10.43: Angular speed (blue) and tracked reference (red) value as a function of time.
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10.12 Mixed-integer nonlinear solver: F8 Crusader aircraft

In this example we illustrate the simplicity of the high-level user interface on a mixed-integer
nonlinear program. In particular, we use an F8 Crusader aircraft model described by a set of
ordinary di�erential equations (ODEs):

�̇�0 = − 0.877𝑥0 + 𝑥2 − 0.088𝑥0𝑥2 + 0.47𝑥2
0 − 0.019𝑥2

1 − 𝑥2
0𝑥2 + 3.846𝑥3

0

− 0.215𝑤 + 0.28𝑥2
0𝑤 + 0.47𝑥0𝑤

2 + 0.63𝑤3

�̇�1 =𝑥2

�̇�2 = − 0.4208𝑥0 − 0.396𝑥2 − 0.47𝑥2
0 − 3.564𝑥3

0 − 20.967𝑤

+ 6.265𝑥2
0𝑤 + 46𝑥0𝑤

2 + 61.4𝑤3

The model is taken from [GarJor77] and consists of three di�erential states: 𝑥0 the angle of
attack in radians, 𝑥1 the pitch angle in radians and 𝑥2 the pitch angle rate in radians per second.
There is one control input 𝑤, the tail deflection angle in radians. The input is the discrete
component of the model, since it can take values within the discrete set {−0.05236, 0.05236}.
This makes the solution process more complicated in comparison to a nonlinear program, as
the di�erent combinations of inputs have to be checked over the control horizon.
The trajectory of the aircraft is to be computed by solving a mixed-integer nonlinear program
(MINLP). First, we define the stage variable 𝑧 by stacking the input and di�erential state vari-
ables:

𝑧 = [𝑤, 𝑥0, 𝑥1, 𝑥2]⊤

You can find the Matlab code of this example to try it out for yourself in the examples folder
that comes with your client.

10.12.1 Defining the problem data

Objective

Our goal is to minimize the distance of the final state to the origin, which can be translated
in the following cost function on the final stage variable:

𝑓(𝑧) = 150𝑥2
0 + 5𝑥2

1 + 5𝑥2
2

The terminal cost function is coded in MATLAB as the following function:

model.objectiveN = @(z) 150 * z(2)^2 + 5 * z(3)^2 + 5 * z(4)^2;

Moreover, control inputs are penalized at every stage via the following stage cost function:

model.objective = @(z) 0.1 * z(1)^2;

Equality constraints

In this example, the only equality constraints are related to the dynamics. They are provided
to FORCESPRO in continuous form. The discretization is then computed internally by the
FORCESPRO integrators.
In the code snippet below, it is important to notice that the control input 𝑤 is replaced with
𝑢 such that

𝑤 =̂ 0.05236 · (2𝑢− 1)

If 𝑤 has values within {−0.05236, 0.05236}, then 𝑢 lies within the binary set {0, 1}.
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wa = 0.05236;
wa2 = wa^2;
wa3 = wa^3;
continuous_dynamics = @(x, u) [-0.877 * x(1) + x(3) - 0.088 * x(1) * x(3)...

+ 0.47 * x(1) * x(1) - 0.019 * x(2) * x(2)...
- x(1) * x(1) * x(3)...
+ 3.846 * x(1) * x(1) * x(1)...
- 0.215 * wa * (2 * u(1) - 1)...
+ 0.28 * x(1) * x(1) * wa * (2 * u(1) - 1)...
+ 0.47*x(1)*wa2*(2*u(1)-1)*(2*u(1)-1)...
+ 0.63*wa3*(2*u(1)-1)*(2*u(1)-1)*(2*u(1)-1);
x(3);
-4.208*x(1) - 0.396 * x(3) - 0.47 * x(1)*x(1)...
- 3.564 * x(1) * x(1) * x(1)...
- 20.967 * wa * (2 * u(1) - 1)...
+ 6.265 * x(1) * x(1) * wa * (2 * u(1) -1 )...
+ 46.0 * x(1)*wa2*(2*u(1)-1)*(2*u(1)-1)...
+ 61.4*wa3*(2*u(1)-1)*(2*u(1)-1)*(2*u(1)-1)];

model.continuous_dynamics = continuous_dynamics;
model.E = [zeros(3, 1), eye(3)];

Inequality constraints

The maneuver is subjected to a set of constraints, involving only the simple bounds:

0 rad ≤𝑢 ≤ 1 rad

−10 rad ≤𝑥0 ≤ 10 rad

−10 rad ≤𝑥1 ≤ 10 rad

−10 rad/sec ≤𝑥2 ≤ 10 rad/sec

Initial and final conditions

The goal of the maneuver is to steer the aircraft from an initial condition with nose pointing
upwards

(0.4655, 0, 0)𝑇

to the origin.

10.12.2 Defining the MPC problem

With the above de fined MALTAB functions for objective and equality constraints, we can
completely define the MINLP formulation in the next code snippet. For this example, the
number of stages has been set to 𝑁 = 100.
In the code snippet below, it is important to notice that the lower and upper bounds are
declared as parametric before generating the solver. This needs to be done for generating
mixed-integer NLP solvers. Lower and upper bounds are meant to be provided at run-time.

%% Problem dimension
nx = 3;
nu = 1;
nz = nx + nu;
model.N = 100;

(continues on next page)
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(continued from previous page)
model.nvar = nz;
model.neq = nx;

%% Indices of initial state in stage variable
model.xinitidx = nu+1:model.nvar;

%% Lower and upper bound need to be set as parametric for generating an MINLP
→˓solver
model.lb = [];
model.ub = [];
model.lbidx{1} = 1 : nu;
model.ubidx{1} = 1 : nu;
for i = 2 : model.N

model.lbidx{i} = 1 : model.nvar;
model.ubidx{i} = 1 : model.nvar;

end

%% Dynamics
wa = 0.05236;
wa2 = wa^2;
wa3 = wa^3;
continuous_dynamics = @(x, u) [-0.877 * x(1) + x(3) - 0.088 * x(1) * x(3)...

+ 0.47 * x(1) * x(1) - 0.019 * x(2) * x(2)...
- x(1) * x(1) * x(3)...
+ 3.846 * x(1) * x(1) * x(1)...
- 0.215 * wa * (2 * u(1) - 1)...
+ 0.28 * x(1) * x(1) * wa * (2 * u(1) - 1)...
+ 0.47 *x(1)*wa2*(2*u(1)-1)*(2*u(1)-1)...
+ 0.63*wa3*(2*u(1)-1)*(2*u(1)-1)*(2*u(1)-1);
x(3);
-4.208 * x(1) - 0.396 * x(3)...
- 0.47 * x(1) * x(1)...
- 3.564 * x(1) * x(1) * x(1)...
- 20.967 * wa * (2 * u(1) - 1)...
+ 6.265*x(1)*x(1)*wa*(2*u(1)-1)...
+ 46.0*x(1)*wa2*(2*u(1)-1)*(2*u(1)-1)...
+ 61.4*wa3*(2*u(1)-1)*(2*u(1)-1)*(2*u(1)-1)];

model.continuous_dynamics = continuous_dynamics;
model.E = [zeros(nx, nu), eye(nx)];

%% Objective
mode.objective = @(z) 0.1 * z(nu)^2;
model.objectiveN = @(z) 150 * z(nu+1)^2...

+ 5 * z(nu+2)^2...
+ 5 * z(nu+3)^2;

%% Indices of integer variables within every stage
for s = 1:model.N

model.intidx{s} = [1];
end

10.12.3 Generating an MINLP solver

We have now populated model with the necessary fields to generate a mixed-integer solver for
our problem. Now we set some options for our solver and then use the function FORCES_NLP
to generate a solver for the problem defined by model with the initial state and the lower and
upper bounds as a parameters:
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%% Set code-generation options
codeoptions = getOptions('F8aircraft');
codeoptions.printlevel = 1;
codeoptions.misra2012_check = 1;
codeoptions.maxit = 2000;
codeoptions.timing = 0;
codeoptions.nlp.integrator.type = 'IRK2';
codeoptions.nlp.integrator.Ts = 0.05;
codeoptions.nlp.integrator.nodes = 20;

%% Generate MINLP solver
FORCES_NLP(model, codeoptions);

In the code snippet above, we have set some integrator options, since the continuous-time
dynamics has been provided in the model. The branch-and-bound search can be run on
several threads in parallel by setting the run-time parameter numThreadsBnB equal to the
number of threads to be used. The default value is 1. Moreover, the maximum number of
threads for the branch-and-bound search can be set via the option max_num_threads. By
default, max_num_threads = 4.

10.12.4 Calling the generated MINLP solver

Once all parameters have been populated, the MEX interface of the solver can be used to
invoke it:

%% Set run-time parameters
problem.(sprintf('lb%02d', 1)) = 0;
problem.(sprintf('ub%02d', 1)) = 1;
for s = 2:99

problem.(sprintf('lb%02d', s)) = [0, -1e1 * ones(1, 3)]';
problem.(sprintf('ub%02d', s)) = [1, 1e1 * ones(1, 3)]';

end
problem.(sprintf('lb%02d', 100)) = [0, -1e1 * ones(1, 3)]';
problem.(sprintf('ub%02d', Nstages)) = [1, 1e1 * ones(1, 3)]';

problem.x0 = repmat([0; zeros(3, 1)], 100, 1);
problem.xinit = zeros(3, 1);
problem.xinit(1) = 0.4655;

%% Call MINLP solver
[sol, exitflag, info] = F8aircraft(problem);

10.12.5 Providing an initial guess at run-time

In order to provide an guess for the incumbent, the following code-generation options need
to be enabled:

codeoptions.minlp.int_guess = 1;
codeoptions.minlp.round_root = 0; % Default value is 1
codeoptions.minlp.int_guess_stage_vars = [1]; % An integer guess is provided for
→˓variable 1 at every stage

Then the incumbent guess can be set at run-time via

for s = 1:Nstages
problem.(sprintf('int_guess%03d', s)) = [0];

end

(continues on next page)
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(continued from previous page)
for s = 1:2

problem.(sprintf('int_guess%03d', s)) = [1];
end
problem.(sprintf('int_guess%03d', 39)) = [1];
for s = 41:42
problem.(sprintf('int_guess%03d', s)) = [1];

end
for s = 85:90

problem.(sprintf('int_guess%03d', s)) = [1];
end

10.12.6 Changing the parallelization strategy at run-time

When running the MINLP solver on several threads with numThreadsBnB >= 1, the paralleliza-
tion strategy can be changed via

problem.parallelStrategy = 0; % 0 (one shared priority queue, default), 1 (one
→˓priority queue per thread)

10.12.7 Results

The control objective is to drive the angle of attack as close as possible to zero within a five
seconds time frame. The control input is the tail deflection angle, which can take values with
the set {−0.05236, 0.05236} and the initial state is (0.4655, 0, 0)𝑇 , where the first component is
the angle of attack, the second component is the pitch angle and the third component is the
pitch angle rate.
The angle of attack computed by FORCESPRO MINLP solver running on one thread is shown
in Figure Figure 10.44 and the input sequence is in Figure Figure 10.45. One can notice the
bang-bang behaviour of the solution. When running on three threads the FORCESPRO MINLP
solver provides a solution with lower final primal objective. Results are shown on Figures Figure
10.46 and Figure 10.47.

Figure 10.44: Aircraft’s angle of attack over time computed with one thread.
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Figure 10.45: Aircraft’s tail deflection angle over time with one thread.

Figure 10.46: Aircraft’s angle of attack over time computed with three threads.
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Figure 10.47: Aircraft’s tail deflection angle over time with three threads.
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Chapter 11

Parametric problems

Parameters (or real-time data) are a key concept in FORCESPRO. Usually at least one vector in
an embedded optimization problem will change between two calls to the solver. In MPC, the
initial state changes usually between two sampling times. But other data can change too, for
example because you are working with linearizations of non-linear dynamics, or because the
cost matrices of a quadratic objective function are tuned online. The following API is available
when using the low-level interface only and cannot be used with the high-level interface.

11.1 Defining parameters

FORCESPRO gives you full control over the parametrization of the optimization problem: You
can define all data matrices and vectors to be parametric. To define a parameter in MATLAB,
use the function

parameter = newParam(name, maps2stage, maps2data);

and in Python, use

stages.newParam(name, maps2stage, maps2data)

where name is the parameter name, which you need to be set before calling the solver. The
vector of indices maps2stage defines to which stages the parameters maps. The last argument
maps2data has to be one of the following strings

Table 11.1: Possible string values for argument maps2data
Cost function Equality constraints Inequality constraints
'cost.H' 'eq.c' 'ineq.b.lb'
'cost.f' 'eq.C' 'ineq.b.ub'

'eq.D' 'ineq.p.A'
'ineq.p.b'
'ineq.q.Q'
'ineq.q.l'
'ineq.q.r'

From FORCESPRO 1.8.0, the user is allowed to provide a parameter for all problem stages at
once. All stage parameters are then stacked into one vector or matrix before getting passed
to the solver at runtime. FORCESPRO is notified about this by having

maps2stage = [];

183



FORCESPRO User Manual

For instance, in order to provide a parametric linear cost across all stages, one should use the
following code at codegen.

parameter = newParam('linear_stage_cost', [], 'cost.f');

At runtime, the user is expected to provide the linear stage cost as follows.

problem.linear_stage_cost = repmat(rand(problem.nvar, 1), problem.horzLength, 1);

where problem.horzLength is the horizon length and problem.nvar is the number of stage
variables.

Note: The stacked parameters feature is only available in MATLAB from Forces ‘1.8.0’.

11.2 Example

To define the linear term of the cost of stages 1 to 5 as a parameter, use the following command
in MATLAB

parameter1 = newParam('linear_cost', 1:5, 'cost.f');

and in Python, use

stages.newParam('linear_cost', range(1, 6), 'cost.f')

Note that this will generate only one parameter and the same runtime data will be mapped
to stages 1 to 5. If the runtime data should be di�erent for each stage one would have to
generate five di�erents in this case.
We can also have a second parameter. For instance, the right handside of the first equality
constraints, which is a very common caes in MPC. In MATLAB

parameter2 = newParam('RHS_first_equality_constraint', 1, 'eq.c');

In Python

stages.newParam('RHS_first_equality_constraint', [1], 'eq.c')

11.3 Parametric Quadratic Constraints

As there may be multiple quadratic constraints for every stage, one needs to specify which
ones are to be parametric. One can use a fourth argument in the newParam call, as shown
below. In MATLAB

parameter = newParam(name, maps2stage, maps2data, idxWithinStage);

In Python

stages.newParam(name, maps2stage, maps2data, idxWithinStage)

where idxWithinStage denotes the index of the quadratic constraints to which this parameters
applies.
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11.4 Diagonal Hessians

In case your parametric Hessian is diagonal, you should use the fourth argument of newParam
as shown below. In MATLAB

parameter1 = newParam('Hessians', 1:5, 'cost.H', 'diag');

In Python

stages.newParam('Hessians', range(1,6), 'cost.H', 'diag')

The FORCESPRO solver will then only expect a vector as a parameter. The 'diag' keyword is
currently only valid for hessian matrices related to the objective function.

11.5 Sparse Parameters

If your parameters are not diagonal but they have a sparse structure that can be exploited for
performance, you can use the fourth and fifth arguments of newParam to let FORCESPRO
know about the sparsity pattern. In MATLAB

parameter2 = newParam('Ai', 1:5, 'ineq.p.A', 'sparse', [zeros(5, 6) rand(5, 2)]);

In Python

stages.newParam('Ai',range(1,6),'ineq.p.A','sparse',numpy.hstack((numpy.zeros(5,6),
→˓random.random((5,2)))))

The fifth argument is used to let FORCESPRO know about the location of the non-zero ele-
ments. When a solver is generated using sparse parameters it is the responsibility of the user
to pass on parameters with the correct sparsity pattern to the solver. There will be no warnings
thrown at runtime.
Sparse parameter values have to be passed as a column vector of nonzero elements, i.e. to
assign the values of matrix B to sparse parameter Ci one should use the following: In MATLAB

problem.Ci = nonzeros(sparse(B));

In Python

problem.Ci = B[numpy.nonzeros(B)]

Note that parameters with a general sparsity structure defined by the fifth argument are cur-
rently only supported for polytopic constraints. For the equality constraint matrices, only the
structure [0 A], where A is assumed to be dense, is currently supported.

11.6 Special Parameters

To prevent having to transfer entire matrices for parameters with few changing elements at
runtime, one can specify a sixth argument to let FORCESPRO know about the location of the
elements that will be supplied at runtime. In MATLAB

parameter2 = newParam('Ci', 1:5,'eq.C','sparse',Cstruc,Cvar)

In Python
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stages.newParam('Ci',range(1,6),'eq.C','sparse',Cstruc,Cvar)

Note that in this case the constant values will be taken from the data supplied in the field
Cstruc. At runtime the user only has to supply a column vector including the time-varying
elements marked in the field Cvar. The ordering should be column major.

11.7 Python: Column vs Row Major Storage Format

Unlike Matlab, numpy stores arrays by default in row-major format internally. Since FORCES
expects the parameters in column major storage format, a conversion is necessary. This con-
version is automatically performed by the Python interface when the solver is called. To avoid
the conversion every time the solver is called, you should use the following way of creating the
arrays storing parameters:

a = array([1, 2, 3, 4, 5, 6])
b = a.reshape(2,3,order='F')

The above code reshapes the array into a (2,3) Matrix stored in column major (Fortran) format.
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Chapter 12

Code Deployment

12.1 Main Targets

Main targets include:
• x86 platforms
• x86_64 platforms
• 32bit ARM-Cortex-A platforms
• 32bit ARM-Cortex-M platforms (no shared libraries)
• 64bit ARM-Cortex-A platforms (AARCH64 toolchain)
• 64bit ARM-Cortex-A platforms (Integrity toolchain)
• NVIDIA platforms with ARM-Cortex-A processors
• PowerPC platforms with GCC compiler

You can check here to find the correct naming option for each platform.

12.1.1 High-level interface

The steps to deploy and simulate a FORCESPRO controller on most targets are detailed below.
1. In the High-level interface example BasicExample.m set the code generation options:
codeoptions.platform = '<platform_name>'; % to specify the platform
codeoptions.printlevel = 0; % optional, on some platforms printing is not supported
codeoptions.cleanup = 0; % to keep necessary files for target compile

and then generate the code for your solver (henceforth referred to as “FORCESNLPsolver”,
placed in the folder “BasicExample”) using the high-level interface.
2. Additionally to your solver you will receive the following files generated by CasADi:

• FORCESNLPsolver_casadi2forces.c
• FORCESNLPsolver_model_1.c
• FORCESNLPsolver_model_11.c

(For the generated files FORCESNLPsolver_model_X.c, the X su�x is problem specific)
3. For most target platforms you will receive the following compiled files:

• For MinGW/Linux/MacOS:
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– a static library file libFORCESNLPsolver.a inside the folder lib_target
– a shared library file libFORCESNLPsolver.so inside the folder lib_target

• For Windows:
– a static library file FORCESNLPsolver_static.lib inside the folder lib_target
– a dynamic library file FORCESNLPsolver.dll with its definition file for compilation
FORCESNLPsolver.lib inside the folder lib_target

You need only one of those to build the solver.

Important: The shared library and the dynamic library if used for building need to be present
during runtime as well.

4. Create an interface to call the solver and perform a simulation/test.
You can find a C interface for this example to try it out for yourself in the examples folder that
comes with your client.
5. Copy in the target platform:

• The FORCESNLPsolver folder
• The source files from step 2
• The interface from step 4

6. Compile the solver. The compilation command would be (supposing you are in the
directory which contains the FORCESNLPsolver folder):
<Compiler_exec> HighLevel_BasicExample.c <compiled_solver> FORCESNLPsolver_
→˓casadi2forces.c FORCESNLPsolver_model_1.c FORCESNLPsolver_model_11.c <additional_
→˓libs>

Where:
• <Compiler_exec> would be the compiler used in the target
• <compiled_solver> would be one of the compiled files of step 3
• <additional_libs>would be possible libraries that need to be linked to resolve existing

dependencies.
– For Linux/MacOS it’s usually necessary to link the math library (-lm)
– For Windows you usually need to link the iphlpapi.lib library (it’s distributed with

the Intel Compiler, MinGW as well as Matlab) and sometimes some additional intel
libraries (those are included in the FORCESPRO client under the folder libs_Intel
– if missing they are downloaded after code generation)
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12.1.2 Y2F interface

The steps to deploy and simulate a FORCESPRO controller on most targets are detailed below.
1. In the Y2F interface example mpc_basic_example.m set the code generation options:
codeoptions.platform = '<platform_name>'; % to specify the platform
codeoptions.printlevel = 0; % optional, on some platforms printing is not supported

and then generate the code for your solver (henceforth referred to as “simpleMPC_solver”,
placed in the folder “Y2F”) using the Y2F interface.
2. The Y2F solver is composed of a main solver which calls multiple internal solvers. The
file describing the main solver is:

• simpleMPC_solver.c inside the folder interface
3. The internal solvers are provided as compiled files. For most target platforms you will
receive the following compiled files:

• For MinGW/Linux/MacOS:
– a static library file libinternal_simpleMPC_solver_1.a inside the folder
lib_target

– a shared library file libinternal_simpleMPC_solver_1.so inside the folder
lib_target

• For Windows:
– a static library file internal_simpleMPC_solver_1_static.lib inside the folder
lib_target

– a dynamic library file internal_simpleMPC_solver_1.dllwith its definition file for
compilation internal_simpleMPC_solver_1.lib inside the folder lib_target

You need only one of those to build the solver.

Important: The shared library and the dynamic library if used for building need to be present
during runtime as well.

4. Create an interface to call the solver and perform a simulation/test.
You can find a C interface for this example to try it out for yourself in the examples folder that
comes with your client.
5. Copy in the target platform:

• The simpleMPC_solver folder
• The interface from step 4

6. Compile the solver. The compilation command would be (supposing you are in the
directory which contains the simpleMPC_solver folder):
<Compiler_exec> Y2F_mpc_basic_example.c simpleMPC_solver/interface/simpleMPC_
→˓solver.c <compiled_solver> <additional_libs>

Where:
• <Compiler_exec> would be the compiler used in the target
• <compiled_solver> would be one of the compiled files of step 3
• <additional_libs>would be possible libraries that need to be linked to resolve existing

dependencies.
– For Linux/MacOS it’s usually necessary to link the math library (-lm)

Chapter 12. Code Deployment 189



FORCESPRO User Manual

– For Windows you usually need to link the iphlpapi.lib library (it’s distributed with
the Intel Compiler, MinGW as well as Matlab) and sometimes some additional intel
libraries (those are included in the FORCESPRO client under libs_Intel – if missing
they are downloaded after code generation)
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12.2 dSPACE AutoBox

12.2.1 High-level interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a dSPACE AutoBox are detailed
below.

1. (Figure 12.1) Set the code generation options:

codeoptions.platform = 'dSPACE-AutoBox'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported
codeoptions.cleanup = 0; % to keep necessary files for target compile

and then generate the code for your solver (henceforth referred to as “FORCESNLPsolver”,
placed in the folder “BasicExample”) using the high-level interface.

2. (Figure 12.2) Create a new Simulink model using the RTI1007 template provided by
dSPACE.

3. (Figure 12.3) Populate the Simulink model with the system you want to control.
4. (Figure 12.4) Make sure the FORCESNLPsolver_simulinkBlock.mexw64 file (created dur-

ing code generation) is on the Matlab path.
5. (Figure 12.5) Open the FORCESNLPsolver_lib.mdl Simulink model file, contained in the

interface folder of the FORCESNLPsolver folder created during code generation.
6. (Figure 12.6) Copy-paste the FORCESPRO Simulink block into your simulation model and

connect its inputs and outputs appropriately.
7. (Figure 12.7) Access the Simulink model’s options.
8. (Figure 12.8) In the “Solver” tab, set the options:
• Simulation start/stop time: Depending on the simulation wanted.
• Solver type: Discrete or fixed-step.
• Fixed-step size: Needs to be higher than the execution time of the solver.

9. (Figure 12.9) In the “Code Generation” tab, set the options:
• System target file: rti1007.tlc
• Language: C
• Generate makefile: On
• Template makefile: rti1007.tmf
• Make command: make_rti

10. (Figure 12.10) In the “Code Generation/Custom Code” tab, include the directories:
• BasicExample
• BasicExample\FORCESNLPsolver\interface
• BasicExample\FORCESNLPsolver\lib_target

11. (Figure 12.11) In the “Code Generation/Custom Code” tab, add the source files:
• FORCESNLPsolver_simulinkBlock.c
• FORCESNLPsolver_casadi2forces.c
• FORCESNLPsolver_model_1.c
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• FORCESNLPsolver_model_11.c
(For the generated files FORCESNLPsolver_model_X.c, the X su�x is problem specific)

12. (Figure 12.12) In the “Code Generation/Custom Code” tab, add the library files:
• libFORCESNLPsolver.a

13. (Figure 12.13) Access the FORCESPRO block’s parameters.
14. (Figure 12.14) Remove the “FORCESNLPsolver” prefix from the S-function module.
15. (Figure 12.15) Compile the code of the Simulink model. This will also automatically load

the model to the connected AutoBox.
16. Deployment is complete and simulations can now be run on the AutoBox platform.

Figures

Figure 12.1: Set the appropriate code generation options.
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Figure 12.2: Create a Simulink model.

Figure 12.3: Populate the Simulink model.
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Figure 12.4: Add the folder containing the .mexw64 solver file to the Matlab path.

Figure 12.5: Open the generated Simulink solver model.
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Figure 12.6: Copy-paste and connect the FORCESPRO block.

Figure 12.7: Open the Simulink model options.
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Figure 12.8: Set the Simulink solver options.

Figure 12.9: Set the Simulink code generation options.
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Figure 12.10: Add the directories included for the code generation.

Figure 12.11: Add the source files used for the code generation.
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Figure 12.12: Add the libraries used for the code generation.

Figure 12.13: Open the FORCESPRO block’s parameters.
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Figure 12.14: Remove the leading solver name from the S-function module.

Figure 12.15: Compile the code of the Simulink model.
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12.2.2 Y2F interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a dSPACE AutoBox are detailed
below.

1. (Figure 12.16) Set the code generation options:

codeoptions.platform = 'dSPACE-AutoBox'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported

and then generate the code for your solver (henceforth referred to as “simplempc_solver”,
placed in the folder “Y2F”) using the Y2F interface.

2. (Figure 12.17) Create a new Simulink model using the RTI1007 template provided by
dSPACE.

3. (Figure 12.18) Populate the Simulink model with the system you want to control.
4. (Figure 12.19) Make sure the simplempc_solver_simulinkBlock.mexw64 file (created

during code generation) is on the Matlab path.
5. (Figure 12.20) Copy-paste the FORCESPRO Simulink block, contained in the created

y2f_simulink_lib.slx Simulink model file, into your simulation model and connect
its inputs and outputs appropriately.

6. (Figure 12.21) Access the Simulink model’s options.
7. (Figure 12.22) In the “Solver” tab, set the options:
• Simulation start/stop time: Depending on the simulation wanted.
• Solver type: Discrete or fixed-step.
• Fixed-step size: Needs to be higher than the execution time of the solver.

8. (Figure 12.23) In the “Code Generation/RTI general build options” tab, set the options:
• System target file: rti1007.tlc
• Language: C
• Generate makefile: On
• Template makefile: rti1007.tmf
• Make command: make_rti

9. (Figure 12.24) In the “Code Generation/Custom Code” tab, include the directories:
• Y2F
• Y2F\simplempc_solver\interface
• Y2F\simplempc_solver\lib_target

10. (Figure 12.25) In the “Code Generation/Custom Code” tab, add the source files:
• simplempc_solver_simulinkBlock.c
• simplempc_solver.c

11. (Figure 12.26) In the “Code Generation/Custom Code” tab, add the library files:
• libinternal_simplempc_solver_1.a

12. (Figure 12.27) Compile the code of the Simulink model. This will also automatically load
the model to the connected AutoBox.

13. Deployment is complete and simulations can now be run on the AutoBox platform.
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Figures

Figure 12.16: Set the appropriate code generation options.

Figure 12.17: Create a Simulink model.
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Figure 12.18: Populate the Simulink model.

Figure 12.19: Add the folder containing the .mexw64 solver file to the Matlab path.
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Figure 12.20: Copy-paste and connect the FORCESPRO block.

Figure 12.21: Open the Simulink model options.
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Figure 12.22: Set the Simulink solver options.

Figure 12.23: Set the Simulink code generation options.
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Figure 12.24: Add the directories included for the code generation.

Figure 12.25: Add the source files used for the code generation.
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Figure 12.26: Add the libraries used for the code generation.

Figure 12.27: Compile the code of the Simulink model.
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12.3 dSPACE MicroAutoBox II

12.3.1 High-level interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a dSPACE MicroAutoBox II are
detailed below.

1. (Figure 12.28) Set the code generation options:

codeoptions.platform = 'dSPACE-MABII'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported
codeoptions.cleanup = 0; % to keep necessary files for target compile

and then generate the code for your solver (henceforth referred to as “FORCESNLPsolver”,
placed in the folder “BasicExample”) using the high-level interface.

2. (Figure 12.29) Create a new Simulink model using the RTI1401 template provided by
dSPACE.

3. (Figure 12.30) Populate the Simulink model with the system you want to control.
4. (Figure 12.31) Make sure the FORCESNLPsolver_simulinkBlock.mexw64 file (created dur-

ing code generation) is on the Matlab path.
5. (Figure 12.32) Open the FORCESNLPsolver_lib.mdl Simulink model file, contained in

the interface folder of the FORCESNLPsolver folder created during code generation.
6. (Figure 12.33) Copy-paste the FORCESPRO Simulink block into your simulation model

and connect its inputs and outputs appropriately.
7. (Figure 12.34) Access the Simulink model’s options.
8. (Figure 12.35) In the “Solver” tab, set the options:
• Simulation start/stop time: Depending on the simulation wanted.
• Solver type: Discrete or fixed-step.
• Fixed-step size: Needs to be higher than the execution time of the solver.

9. (Figure 12.36) In the “Code Generation” tab, set the options:
• System target file: rti1401.tlc
• Language: C
• Generate makefile: On
• Template makefile: rti1401.tmf
• Make command: make_rti

10. (Figure 12.37) In the “Code Generation/Custom Code” tab, include the directories:
• BasicExample
• BasicExample\FORCESNLPsolver\interface
• BasicExample\FORCESNLPsolver\lib_target

11. (Figure 12.38) In the “Code Generation/Custom Code” tab, add the source files:
• FORCESNLPsolver_simulinkBlock.c
• FORCESNLPsolver_casadi2forces.c
• FORCESNLPsolver_model_1.c
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• FORCESNLPsolver_model_11.c
(For the generated files FORCESNLPsolver_model_X.c, the X su�x is problem specific)

12. (Figure 12.39) In the “Code Generation/Custom Code” tab, add the library files:
• FORCESNLPsolver.lib

13. (Figure 12.40) Access the FORCESPRO block’s parameters.
14. (Figure 12.41) Remove the “FORCESNLPsolver” prefix from the S-function module.
15. (Figure 12.42) Compile the code of the Simulink model. This will also automatically load

the model to the connected MicroAutoBox.
16. Deployment is complete and simulations can now be run on the MicroAutoBox II plat-

form.

Figures

Figure 12.28: Set the appropriate code generation options.
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Figure 12.29: Create a Simulink model.

Figure 12.30: Populate the Simulink model.
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Figure 12.31: Add the folder containing the .mexw64 solver file to the Matlab path.

Figure 12.32: Open the generated Simulink solver model.
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Figure 12.33: Copy-paste and connect the FORCESPRO block.

Figure 12.34: Open the Simulink model options.
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Figure 12.35: Set the Simulink solver options.

Figure 12.36: Set the Simulink code generation options.
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Figure 12.37: Add the directories included for the code generation.

Figure 12.38: Add the source files used for the code generation.
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Figure 12.39: Add the libraries used for the code generation.

Figure 12.40: Open the FORCESPRO block’s parameters.
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Figure 12.41: Remove the leading solver name from the S-function module.

Figure 12.42: Compile the code of the Simulink model.
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12.3.2 Y2F interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a dSPACE MicroAutoBox II are
detailed below.

1. (Figure 12.43) Set the code generation options:

codeoptions.platform = 'dSPACE-MABII'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported

and then generate the code for your solver (henceforth referred to as “simplempc_solver”,
placed in the folder “Y2F”) using the Y2F interface.

2. (Figure 12.44) Create a new Simulink model using the RTI1401 template provided by
dSPACE.

3. (Figure 12.45) Populate the Simulink model with the system you want to control.
4. (Figure 12.46) Make sure the simplempc_solver_simulinkBlock.mexw64 file (created

during code generation) is on the Matlab path.
5. (Figure 12.47) Copy-paste the FORCESPRO Simulink block, contained in the created

y2f_simulink_lib.slx Simulink model file, into your simulation model and connect
its inputs and outputs appropriately.

6. (Figure 12.48) Access the Simulink model’s options.
7. (Figure 12.49) In the “Solver” tab, set the options:
• Simulation start/stop time: Depending on the simulation wanted.
• Solver type: Discrete or fixed-step.
• Fixed-step size: Needs to be higher than the execution time of the solver.

8. (Figure 12.50) In the “Code Generation/RTI general build options” tab, set the options:
• System target file: rti1401.tlc
• Language: C
• Generate makefile: On
• Template makefile: rti1401.tmf
• Make command: make_rti

9. (Figure 12.51) In the “Code Generation/Custom Code” tab, include the directories:
• Y2F
• Y2F\simplempc_solver\interface
• Y2F\simplempc_solver\lib_target

10. (Figure 12.52) In the “Code Generation/Custom Code” tab, add the source files:
• simplempc_solver_simulinkBlock.c
• simplempc_solver.c

11. (Figure 12.53) In the “Code Generation/Custom Code” tab, add the library files:
• internal_simplempc_solver_1.lib

12. (Figure 12.54) Compile the code of the Simulink model. This will also automatically load
the model to the connected MicroAutoBox.

13. Deployment is complete and simulations can now be run on the MicroAutoBox II plat-
form.

216 Chapter 12. Code Deployment



FORCESPRO User Manual

Figures

Figure 12.43: Set the appropriate code generation options.
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Figure 12.44: Create a Simulink model.

Figure 12.45: Populate the Simulink model.
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Figure 12.46: Add the folder containing the .mexw64 solver file to the Matlab path.

Figure 12.47: Copy-paste and connect the FORCESPRO block.
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Figure 12.48: Open the Simulink model options.

Figure 12.49: Set the Simulink solver options.
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Figure 12.50: Set the Simulink code generation options.

Figure 12.51: Add the directories included for the code generation.
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Figure 12.52: Add the source files used for the code generation.

Figure 12.53: Add the libraries used for the code generation.
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Figure 12.54: Compile the code of the Simulink model.
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12.4 dSPACE MicroAutoBox III

12.4.1 Code Generation

The steps to deploy a FORCESPRO controller on a dSPACE MicroAutoBox III are detailed below.
1) Set the code generation options (see Figure 12.55):

codeoptions.platform = 'dSPACE-MABXIII'; % to generate code for the MicroAutoBox
→˓III
codeoptions.printlevel = 0; % printing is not supported for the MicroAutoBox III
codeoptions.cleanup = 0; % to keep necessary files for target compile

Important: When generating code for the MicroAutoBox III, codeoptions.optlevel can
take values 0-4 instead of 0-3 where

• 0: no optimization
• 1: optimize for size
• 2: optimize for speed
• 3: optimize for size and speed
• 4: optimize for size and speed with more precise numerics

Figure 12.55: Set the appropriate code generation options.

2) Create a new Simulink model (henceforth referred to as dSPACE-MABXIII.slx) us-
ing the dSPACE Run-Time Target template provided by dSPACE and save it in the
BasicExample folder (see Figure 12.56).

3) Populate the Simulink model with the system you want to control (see Figure 12.57).
4) Run the BasicExample.m script to perform code generation for your solver (henceforth

referred to as FORCESNLPsolver, placed in the folder “BasicExample”). This will create
the necessary files for your building (see Figure 12.58 , Figure 12.59 and Figure 12.60).

5) The FORCESNLPsolver_simulinkBlock.<mex_extension> file (created during code
generation) needs to be in the same path as your model (see Figure 12.61).

6) Open the FORCESNLPsolver_lib.mdl Simulink model file, contained in the interface
folder of the FORCESNLPsolver folder created during code generation (see Figure 12.62).

7) Copy-paste the FORCESPRO Simulink block into your simulation model and connect its
inputs and outputs appropriately (see Figure 12.63).
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Figure 12.56: Create a Simulink model.

Figure 12.57: Populate the Simulink model.

Figure 12.58: Generated files.
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Figure 12.59: Solver interface files.

Figure 12.60: Solver libraries.

Figure 12.61: The .<mex_extension> solver file is in the same path as the model.
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Figure 12.62: Open the generated Simulink solver model.

Figure 12.63: Copy-paste and connect the FORCESPRO block.
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8) Access the Simulink model’s options. In the “Solver” tab, set the options (see Figure 12.64):
• Simulation start/stop time: Depending on the simulation wanted.
• Solver type: Discrete or fixed-step.
• Fixed-step size: Needs to be higher than the execution time of the solver.

9) In the “Code Generation” tab, set the options (see Figure 12.65):
• System target file: dsrt.tlc
• Language: C
• Generate makefile: Checked
• Template makefile: dsrt_default_tmf
• Make command: make_dsrt

10) In the “Code Generation/Custom Code” tab, include the directories (see Figure 12.66):
• .\FORCESNLPsolver\include
• .\FORCESNLPsolver\interface
• .\FORCESNLPsolver\lib_target

11) In the “Code Generation/Custom Code” tab, add the source files (see Figure 12.67):
• FORCESNLPsolver_simulinkBlock.c
• FORCESNLPsolver_casadi2forces.c
• FORCESNLPsolver_model_1.c
• FORCESNLPsolver_model_11.c

(For the generated files FORCESNLPsolver_model_X.c, the X su�x is problem specific)
12) In the “Code Generation/Custom Code” tab, add the library files (see Figure 12.68):
• libFORCESNLPsolver.a

13) Access the FORCESPRO block’s parameters (see Figure 12.69).
14) Remove the “FORCESNLPsolver” prefix from the S-function module (see Figure 12.70).
15) Create a new Project and Application in ConfigurationDesk. Select directory of project,

name of project and application, the model dSPACE_MABXIII.slx as the application
process and connected MicroAutoBox III to deploy to (see Figure 12.71).

16) Go to the tasks tab and make sure the period of the Periodic Task matches the fixed step
size selected in the Simulink model options (see Figure 12.72).

17) Go to the build tab and start the building process. After building is complete the appli-
cation will be loaded automatically in the MicroAutoBox III (see Figure 12.73).
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Figure 12.64: Set the Simulink solver options.

Figure 12.65: Set the Simulink code generation options.
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Figure 12.66: Add the directories included for the code generation.

Figure 12.67: Add the source files used for the code generation.
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Figure 12.68: Add the libraries used for the code generation.

Figure 12.69: Open the FORCESPRO block’s parameters.
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Figure 12.70: Remove the leading solver name from the S-function module.
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Figure 12.71: Create project and application in ConfigurationDesk.

Figure 12.72: Set period of Periodic Task.
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Figure 12.73: Build the project.
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12.4.2 Solver Execution

The steps to simulate a FORCESPRO controller on a dSPACE MicroAutoBox III are detailed
below.

1) After code generation with FORCESPRO and building with the ConfigurationDesk, the
ConfigurationDesk project will have generated files to use to run your model on the Mi-
croAutoBox III (see Figure 12.74 and Figure 12.75).

Figure 12.74: The generated files from the ConfigurationDesk building.

Figure 12.75: The files necessary for the simulation of the FORCESPRO controller.

2) Open dSpace Control Desk and select create new project and name it (see Figure 12.76).
3) Name the experiment to execute (see Figure 12.77).
4) Select the platform to which you will deploy the generated executable (see Figure 12.78).
5) Import the variable description file BasicExample.sdf in order to have access to the

model variables and see the results of the execution (see Figure 12.79).
6) On the project layout select the tab Variables and on the BasicExample.sdf category

expand Model Root.
7) Select U OUTPUT and X OUTPUT and Drag & Drop all the input variables together to the

Layout. In the opened menu select Time Plotter (see Figure 12.80 and Figure 12.81).
8) To see all the plots concurrently right-click on the left of the Y-axis and select

YAxes-view> Horizontal stacked (see Figure 12.82).
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Figure 12.76: Start a new project and name it.

Figure 12.77: Name your experiment.
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Figure 12.78: Select the MicroAutoBox III platform.

Figure 12.79: Import the variable description file.
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Figure 12.80: Add the inputs of U OUTPUT in a Time Plotter.

Figure 12.81: Add the inputs of X OUTPUT in the same Time Plotter.
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Figure 12.82: Select to show all the signals on the same plot with their own Y-axes
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9) Application should have already been loaded from the building of ConfigurationDesk.
Otherwise, select the Platforms/Devices tab. Right-Click on your platform and se-
lect Real-Time Application> Load. Choose the executable file BasicExample.rta (see
Figure 12.83 and Figure 12.84).

10) Select Go Online and Start Measuring to see the results. (see Figure 12.85 and Figure
12.86).

Figure 12.83: Load the application on the dSPACE MicroAutoBox III.

Figure 12.84: Select BasicExample.rta from the ConfigurationDesk project folder.
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Figure 12.85: Buttons Go Online and Start Measuring to receive execution results.

Figure 12.86: Plots and results from experiment on dSPACE MicroAutoBox III.
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12.5 Speedgoat

12.5.1 High-level interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a Speedgoat platform are de-
tailed below.

1. (Figure 12.87) Set the code generation options:

codeoptions.platform = 'Speedgoat-x86'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported
codeoptions.cleanup = 0; % to keep necessary files for target compile

and then generate the code for your solver (henceforth referred to as “FORCESNLPsolver”,
placed in the folder “BasicExample”) using the high-level interface.

2. (Figure 12.88) Create a new Simulink model using the blank model template.
3. (Figure 12.89) Populate the Simulink model with the system you want to control.
4. (Figure 12.90) Make sure the FORCESNLPsolver_simulinkBlock.mexw64 file (created

during code generation) is on the Matlab path.
5. (Figure 12.91) Open the FORCESNLPsolver_lib.mdl Simulink model file, contained in the

interface folder of the FORCESNLPsolver folder created during code generation.
6. (Figure 12.92) Copy-paste the FORCESPRO Simulink block into your simulation model

and connect its inputs and outputs appropriately.
7. (Figure 12.93) Access the Simulink model’s options.
8. (Figure 12.94) In the “Solver” tab, set the options:
• Simulation start/stop time: Depending on the simulation wanted.
• Solver type: Discrete or fixed-step.
• Fixed-step size: Needs to be higher than the execution time of the solver.

9. (Figure 12.95) In the “Code Generation” tab, set the options:
• System target file: slrt.tlc
• Language: C
• Generate makefile: On
• Template makefile: slrt_default_tmf
• Make command: make_rtw

10. (Figure 12.96) In the “Code Generation/Custom Code” tab, include the directories:
• BasicExample
• BasicExample\FORCESNLPsolver\interface
• BasicExample\FORCESNLPsolver\lib_target

11. (Figure 12.97) In the “Code Generation/Custom Code” tab, add the source files:
• FORCESNLPsolver_simulinkBlock.c
• FORCESNLPsolver_casadi2forces.c
• FORCESNLPsolver_model_1.c
• FORCESNLPsolver_model_11.c
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(For the generated files FORCESNLPsolver_model_X.c, the X su�x is problem specific)
12. (Figure 12.98) In the “Code Generation/Custom Code” tab, add the library files:
• FORCESNLPsolver.lib

13. (Figure 12.99) Access the FORCESPRO block’s parameters.
14. (Figure 12.100) Remove “FORCESNLPsolver” and “FORCESNLPsolver_simulinkBlock” from

the S-function module.
15. (Figure 12.101) Compile the code of the Simulink model. This will also automatically load

the model to the connected Speedgoat platform.
16. Deployment is complete and simulations can now be run on the Speedgoat platform.
17. Run the simulation on the Speedgoat platform.

You can find the Matlab code of this simulation to try it out for yourself in the examples
folder that comes with your client.

Figures

Figure 12.87: Set the appropriate code generation options.
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Figure 12.88: Create a Simulink model.

Figure 12.89: Populate the Simulink model.

Figure 12.90: Add the folder containing the .mexw64 solver file to the Matlab path.
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Figure 12.91: Open the generated Simulink solver model.

Figure 12.92: Copy-paste and connect the FORCESPRO block.
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Figure 12.93: Open the Simulink model options.

Figure 12.94: Set the Simulink solver options.

246 Chapter 12. Code Deployment



FORCESPRO User Manual

Figure 12.95: Set the Simulink code generation options.

Figure 12.96: Add the directories included for the code generation.
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Figure 12.97: Add the source files used for the code generation.
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Figure 12.98: Add the libraries used for the code generation.

Figure 12.99: Open the FORCESPRO block’s parameters.
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Figure 12.100: Remove the default data from the S-function module.
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Figure 12.101: Compile the code of the Simulink model.
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12.5.2 Y2F interface

Instructions

The steps to deploy and simulate a FORCESPRO controller on a Speedgoat platform are de-
tailed below.

1. (Figure 12.102) Set the code generation options:

codeoptions.platform = 'Speedgoat-x86'; % to specify the platform
codeoptions.printlevel = 0; % on some platforms printing is not supported

and then generate the code for your solver (henceforth referred to as “simplempc_solver”,
placed in the folder “Y2F”) using the Y2F interface.

2. (Figure 12.103) Create a new Simulink model using the blank model template.
3. (Figure 12.104) Populate the Simulink model with the system you want to control.
4. (Figure 12.105) Make sure the simplempc_solver_simulinkBlock.mexw64 file (created

during code generation) is on the Matlab path.
5. (Figure 12.106) Copy-paste the FORCESPRO Simulink block, contained in the created

y2f_simulink_lib.slx Simulink model file, into your simulation model and connect
its inputs and outputs appropriately.

6. (Figure 12.107) Access the Simulink model’s options.
7. (Figure 12.108) In the “Solver” tab, set the options:
• Simulation start/stop time: Depending on the simulation wanted.
• Solver type: Discrete or fixed-step.
• Fixed-step size: Needs to be higher than the execution time of the solver.

8. (Figure 12.109) In the “Code Generation/RTI general build options” tab, set the options:
• System target file: slrt.tlc
• Language: C
• Generate makefile: On
• Template makefile: slrt_default_tmf
• Make command: make_rtw

9. (Figure 12.110) In the “Code Generation/Custom Code” tab, include the directories:
• Y2F\simplempc_solver\interface
• Y2F\simplempc_solver\lib_target

10. (Figure 12.111) In the “Code Generation/Custom Code” tab, add the source files:
• simplempc_solver_simulinkBlock.c
• simplempc_solver.c

11. (Figure 12.112) In the “Code Generation/Custom Code” tab, add the library files:
• internal_simplempc_solver_1.lib

12. (Figure 12.113) Compile the code of the Simulink model. This will also automatically load
the model to the connected Speedgoat platform.

13. Deployment is complete and simulations can now be run on the Speedgoat platform.
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14. Run the simulation on the Speedgoat platform.
You can find the Matlab code of this simulation to try it out for yourself in the examples
folder that comes with your client.

Figures

Figure 12.102: Set the appropriate code generation options.

Figure 12.103: Create a Simulink model.
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Figure 12.104: Populate the Simulink model.

Figure 12.105: Add the folder containing the .mexw64 solver file to the Matlab path.

Figure 12.106: Copy-paste and connect the FORCESPRO block.
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Figure 12.107: Open the Simulink model options.

Figure 12.108: Set the Simulink solver options.
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Figure 12.109: Set the Simulink code generation options.

Figure 12.110: Add the directories included for the code generation.
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Figure 12.111: Add the source files used for the code generation.

Chapter 12. Code Deployment 257



FORCESPRO User Manual

Figure 12.112: Add the libraries used for the code generation.

Figure 12.113: Compile the code of the Simulink model.
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Chapter 13

Licensing

13.1 Machine Identification

The FORCESPRO licensing system works by receiving unique identifiers from the machines
the software runs on and enabling the machines by activating the corresponding unique
identifiers. Activation of machines can be done by receiving the unique identifiers of the
machines using fingerprinting executables provided in the portal and adding those unique
identifiers on the portal.
For more information on machine activation see: https://my.embotech.com/readme

13.1.1 Client Identification

Machines running FORCESPRO clients are licensed using the machine’s username and the
machine’s unique identifier.

13.1.2 Solver Identification

Machines running FORCESPRO solvers are licensed using the machine’s unique identifier.

13.2 Static License

When generating a solver the license’s state on the portal (enabled machines and expiration)
is saved in the solver so that the solver can run on the enabled machines.

13.2.1 System requirements for static license

The requirement for static license checking is to have correct system clock settings (accurately
showing current time, compliant to UTC time).

13.2.2 Generating solvers with static license

Static license checking is automatically enabled on a generated solver.
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13.2.3 Running solvers with static license

After generating a solver, you can move it to the running platform and build it with the rest
of your project.

13.3 License Files

License Files are used in order to enable solvers to run in machines that were not enabled
during the time of code generation or to enable solvers to run after a license renewal (that
happened after solver code generation).

13.3.1 System requirements for license files

The requirements for using license files are:
• A platform supporting I/O operations
• A platform with access to file system
• Correct system clock settings (accurately showing current time, compliant to UTC time)
• Using the MATLAB interface of FORCESPRO

13.3.2 Generating solvers with license files

License file checking is automatically enabled on a generated solver (supposing the platform
supports it). The user has the option to select the name of the license file using the following
codeoption:

% Matlab
codeoptions.license_file_name = '<filename_without_extension>'; % no paths, only
→˓filename

Important: The license file name must be a valid variable name

13.3.3 Generating license files

License files can be created by using the MATLAB function ForcesGetLicenseFile. This func-
tion can be called with the following (optional) arguments:

• license file name: Name to be given to created license file (without extension). De-
fault value: FORCES_PRO

• server: FORCESPRO server to use to generate the license file. Default value: default
server used by client

For more information on function usage run: help ForcesGetLicenseFile in the MATLAB
Command Window.
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13.3.4 Running solvers with license files

After generating a solver, you can move it to the running platform and build it with the rest
of your project. After generating a license file, you can move it to your project folder.
When running a solver:

• The solver will read the license file and validate the license
• The license file need to be in the same folder as the executable of your project

13.4 Floating Licenses

Floating Licenses are used when the system that is enabled for running solvers needs to fre-
quently change or is a virtualized environment (such as Docker or Virtualbox). The licensing
works by getting a temporary local lease from the floating license server in order to be able
to run a solver in a machine.

13.4.1 System requirements for floating licenses

The requirements for enabling solvers with floating licenses are:
• A x86/x86_64 Linux platform
• An internet connection on the running platform
• Correct system clock settings (accurately showing current time, compliant to UTC time)

13.4.2 Floating License Attributes

Floating licenses are defined by the following two fields:
• Number of Licenses: The number of machines that can run solvers concurrently using a

floating license for a FORCESPRO user.
• Lease Time: The time for which a local lease is valid after it has been granted. Default

lease time is 10 minutes. Please contact support@embotech.com to change this.

13.4.3 Generating solvers with floating licenses

To enable floating licenses on a generated solver use the following codeoption:

% Matlab
codeoptions.useFloatingLicense = 1;

# Python
codeoptions["useFloatingLicense"] = 1

And select the platform to use

% Matlab
codeoptions.platform = 'platform_name';

# Python
codeoptions["platform"] = "platform_name"

Available platform options are:
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• Gnu-x86
• Gnu-x86_64
• Docker-Gnu-x86
• Docker-Gnu-x86_64

13.4.4 Running solvers with floating licenses

After generating a solver, you can move it to the running platform and build it with the rest
of your project.
When running a solver:

• The solver will communicate with the floating license server
• If the number of enabled machines has not exceeded the license limits, a license lease

will be returned
• If a lease had already been granted for a machine (and is still valid) this will be the one

returned to the solver instead of granting a new one
• The solver will save the lease locally and run
• If a valid local lease already exists the solver will run without communicating with the

server
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Chapter 14

Solver Options

The default solver options can be loaded when giving a name to the solver with the following
command

codeoptions = getOptions('solvername');

In the documentation below, we assume that you have created this struct and named it
codeoptions.

14.1 General options

We will first discuss how to change several options that are valid for all the FORCESPRO inter-
faces.

14.1.1 Solver name

The name of the solver will be used to name variables, functions, but also the MEX file and
associated help file. This helps you to use multiple solvers generated by FORCES within the
same software project or Simulink model. To set the name of the solver use:

codeoptions.name = 'solvername';

Alternatively, you can directly name the solver when generating the options struct by calling:

codeoptions = getOptions('solvername');

14.1.2 Print level

To control the amount of information the generated solver prints to the console, set the field
printlevel as outlined in Table 14.1.

Table 14.1: Print level options
printlevel Result Dependency
0 No output will be written. (None)
1 Summary line after each solve. <stdio.h>
2 (default) Summary after each iteration of solver. <stdio.h>
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Note: For printlevel=0, the generated solver has no dependency on any system library.
Otherwise, there will be a dependency on <stdio.h>.

Important: printlevel should always be set to 0 when recording performance timings or
when deploying the code on an autonomous embedded system.

14.1.3 Maximum number of iterations

To set the maximum number of iterations of the generated solver, use:

codeoptions.maxit = 200;

The default maximum number of iterations for all solvers provided by FORCESPRO is set to
200.

14.1.4 Compiler optimization level

The compiler optimization level can be varied by changing the field optlevel from 0 to 3
(default):

codeoptions.optlevel = 0;

Important: It is recommended to set optlevel to 0 during prototyping to evaluate the func-
tionality of the solver without long compilation times. Then set it back to 3 when generating
code for deployment or timing measurements.

14.1.5 Running solvers in parallel

The generated solver can be run in parallel on di�erent threads by changing the field
threadSafeStorage from false to true:

codeoptions.threadSafeStorage = true;

14.1.6 Measure Computation time

You can measure the time used for executing the generated code by using:

codeoptions.timing = 1;

By default the execution time is measured. The execution time can be accessed in the field
solvetime of the information structure returned by the solver. In addition, the execution time
is printed in the console if the flag printlevel is greater than 0.

Important: Setting timing on will introduce a dependency on libraries used for accessing
the system clock. Timing should be turned o� when deploying the code on an autonomous
embedded system.
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By default when choosing to generate solvers for target platforms, timing is disabled. You can
manually enable timing on embedded platforms by using:

codeoptions.embedded_timing = 1;

14.1.7 Solver Timeout

Introduction

If you have a critical application which needs to run in a specific timeframe then it’s useful to
set a timeout for the solver in order to control its execution time.
The timeout works by checking the execution time of each iteration of the solver and making
an estimate for next iterations as:

next_iteration_time = timeout_estimate_coeff * max_iteration_time

where:
• max_iteration_time is the execution time of the currently slowest iteration
• timeout_estimate_coeff is a coe�cient used to make the estimate more conservative

or forgiving. Its default value is 1.20

Usage

To enable the solver timeout you can use the following codeoption:

% solver_timeout can take values 0-2
codeoptions.solver_timeout = 1;

# solver_timeout can take values 0-2
codeoptions.solver_timeout = 1

Setting the option to 1 will enable the timeout and provide the floating point variable
solver_timeout as a runtime parameter. Setting the option to 2 will additionally provide
the floating point variable timeout_estimate_coeff as a runtime parameter.

Important: For MINLP solvers a timeout is automatically enabled therefore there’s no need to
use the above codeoptions. For more details on how to use it please check the Mixed-integer
nonlinear solver section.

Not setting the runtime parameters after enabling them with code generation will result in
them taking their default values. The default values for the runtime parameters are:

• For solver_timeout it’s -1.0 which results in timeout being disabled
• For timeout_estimate_coeff it’s 1.20

Important: Since an estimation is required for the timeout, the solvers will always perform
the first iteration (only exception are SQP methods, check SQP inner QP timeout section).
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SQP inner QP timeout

With the SQP_NLP solve method the QP solved as part of the SQP iteration is also set to
timeout based on the remaining time available to the SQP solver. The QP timeout can be
useful in cases where the inner QP takes longer time to execute than expected and could
otherwise cause the SQP solver to miss the timeout mark (in which case the SQP solver would
time out at the start of the next iteration). If the QP times out, the SQP solver will return with
the solution from the previous iteration.
If it is deemed more important to solve the whole QP and get a more updated solution rather
than having a strict timeout, the inner qp timeout can be disabled with the following codeop-
tion:

% this option is relevant only if codeoptions.solver_timeout is enabled
codeoptions.sqp_nlp.qp_timeout = 0;

# this option is relevant only if codeoptions.solver_timeout is enabled
codeoptions.sqp_nlp.qp_timeout = 0

Return Value

When solver timeout is enabled, two additional exitflags are available for the user:

Table 14.2: Timeout exitflags
Exitflag Name Value Description
TIMEOUT_<SOLVERNAME> 2 The solver timed out and returned

the solution found up to the exe-
cuted iteration

INVALID_<TIMEOUT_SOLVERNAME> -12 The timeout provided was too
small to even start a single iteration

If a normal timeout is returned, the outputs of the solver will contain the solution found up to
the executed iteration. If an invalid timeout is returned, the outputs of the solver will contain
the initialization of the solver (or the previous solution if it exists for SQPs).

14.1.8 Datatypes

The type of variables can be changed by setting the field floattype as outlined in Table 14.3.

Table 14.3: Data type options
floattype Decimation Width (bits) Supported algorithms
'double' (default) 64 bit Floating point PDIP, PDIP_NLP, ADMM, DFG, FG
'float' 32 bit Floating point PDIP, PDIP_NLP, ADMM, DFG, FG
'int' 32 bit Fixed point PDIP, PDIP_NLP, ADMM, DFG, FG
'short' 16 bit Fixed point PDIP, PDIP_NLP, ADMM, DFG, FG

Important: Unless running on a resource-constrained platform, we recommend using double
precision floating point arithmetics to avoid problems in the solver. If single precision floating
point has to be used, reduce the required tolerances on the solver accordingly by a power of
two (i.e. from 1E-6 to 1E-3).
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14.1.9 Overwriting existing solvers

When a new solver is generated with the same name as an existing solver one can control the
overwriting behaviour by setting the field overwrite as outlined in Table 14.4.

Table 14.4: Overwrite existing solver options
overwrite Result
0 Never overwrite.
1 Always overwrite.
2 (default) Ask to overwrite.

14.1.10 Solver info in Simulink block

FORCESPRO always generates a Simulink block encapsulating the generated solver. You can
add output ports to the Simulink block to obtain the solver exit flag and other solver informa-
tion (number of iterations, solve time in seconds, value of the objective function) by setting:

codeoptions.showinfo = 1;

By default these ports are not present in the Simulink block.

14.1.11 Code generation server

By default, code generation requests are routed to embotech’s server. To send a code genera-
tion request to a local server, for example when FORCESPRO is used in an enterprise setting,
set the following field to an appropriate value:

codeoptions.server = 'http://embotech-server2.com:8114/v1.5.beta';

14.1.12 Skipping the Build of Simulink S-function

By default, after code generation, the Simulink block is compiled, which may take a very long
time for large problems on Windows systems. If you will not use the Simulink block, or want
to build it later yourself, you can disable automatic builds by using the following option:

codeoptions.BuildSimulinkBlock = 0;

14.1.13 Skipping automatic cleanup

FORCESPRO automatically cleans up some of the files that it generates during the code gen-
eration, but which are usually not needed any more after building the MEX file. In particu-
lar, some intermediate CasADi generated files are deleted. If you would like to prevent any
cleanup by FORCES, set the option:

codeoptions.cleanup = 0;

The default value is 1 (true).

Important: The library or object files generated by FORCESPRO contain only the solver itself.
To retain the CasADi generated files for function evaluations, switch o� automatic cleanup as
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shown above. This is needed if you want to use the solver within another software project, and
need to link to it.

14.1.14 Target platform

As a default option, FORCESPRO generates code for simulation on the host platform. To
obtain code for deployment on a target embedded platform, set the field platform to the
appropriate value. The platforms currently supported by FORCESPRO are given in Table 14.5.
In order to acquire licenses to use a specific platform, licenses can be requested on the portal
by selecting the platform naming stated in the Portal Selection.

Table 14.5: Target platforms supported by FORCESPRO
platform Description Portal Selection
'Generic' (default) For the architecture of the

host platform.
'x86_64' (Engineering
Node)

'x86_64' For x86_64 based 64-bit
platforms (detected OS).

'x86_64'

'x86' For x86 based 32-bit plat-
forms (detected OS).

'x86'

'Win-x86_64' For Windows x86_64 based
64-bit platforms (supports
Microsoft/Intel compiler).

'x86_64'

'Win-x86' For Windows x86 based 32-
bit platforms (supports Mi-
crosoft/Intel compiler).

'x86'

'Win-MinGW-x86_64' For Windows x86_64 based
64-bit platforms (supports
MinGW compiler).

'x86_64'

'Win-MinGW-x86' For Windows x86 based
32-bit platforms (supports
MinGW compiler).

'x86'

'Mac-x86_64' For Mac x86_64 based
64-bit platforms (supports
GCC/Clang compiler).

'x86_64'

'Gnu-x86_64' For Linux x86_64 based 64-
bit platforms (supports GCC
compiler).

'x86_64'

'Gnu-x86' For Linux x86 based 32-
bit platforms (supports GCC
compiler).

'x86'

'Docker-Gnu-x86_64' For Linux x86_64 based
64-bit platforms on Docker
(supports GCC compiler).

'Docker-Gnu-x86_64'

'Docker-Gnu-x86' For Linux x86 based 32-bit
platforms on Docker (sup-
ports GCC compiler).

'Docker-Gnu-x86'

'ARM-Generic' For ARM Cortex 32-bit pro-
cessors (Gnueabih machine
type).

'ARM-Generic-Gnu'

'ARM-Generic64' For ARM Cortex 64-bit pro-
cessors (Aarch machine
type).

'ARM-Generic64-Gnu'

continues on next page
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Table 14.5 – continued from previous page
platform Description Portal Selection
'Integrity-ARM-x86' For ARM Cortex 32-bit pro-

cessors using the Integrity
toolchain.

'Integrity-ARM-x86'

'Integrity-ARM-x64' For ARM Cortex 64-bit pro-
cessors using the Integrity
toolchain.

'Integrity-ARM-x64'

'ARM Cortex-M3' For ARM Cortex M3 32-bit
processors.

'ARM-Cortex-M3'

'ARM-Cortex-M4-NOFPU' For the ARM Cortex M4
32-bit processors without a
floating-point unit.

'ARM-Cortex-M4'

'ARM-Cortex-M4' For the ARM Cortex M4
32-bit processors with a
floating-point unit.

'ARM-Cortex-M4'

'ARM-Cortex-A7' For the ARM Cortex A7 32-bit
processors (Gnueabih ma-
chine type).

'ARM-Cortex-A7'

'ARM-Cortex-A8' For the ARM Cortex A8
32-bit processors (Gnueabih
machine type).

'ARM-Cortex-A8'

'ARM-Cortex-A9' For the ARM Cortex A9
32-bit processors (Gnueabih
machine type).

'ARM-Cortex-A9'

'ARM-Cortex-A15' For the ARM Cortex A15
32-bit processors (Gnueabih
machine type).

'ARM-Cortex-A15'

'ARM-Cortex-A53' For the ARM Cortex A53
64-bit processors (Gnueabih
machine type).

'ARM-Cortex-A53'

'ARM-Cortex-A72' For the ARM Cortex A72
64-bit processors (Gnueabih
machine type).

'ARM-Cortex-A72'

'TI-Cortex-A15' For the ARM Cortex A15
32-bit processors (Gnueabih
machine type).

'TI-Cortex-A15'

'NVIDIA-Cortex-A57' For the NVIDIA Cortex A57
64-bit processors (Aarch ma-
chine type).

'NVIDIA-Cortex-A57'

'AARCH-Cortex-A57' For the ARM Cortex A57 64-
bit processors (Aarch ma-
chine type).

'AARCH-Cortex-A57'

'AARCH-Cortex-A72' For the ARM Cortex A72 64-
bit processors (Aarch ma-
chine type).

'AARCH-Cortex-A72'

'PowerPC' For 32-bit PowerPC based
platforms (supports GCC
compiler).

'PowerPC-Gnu'

'PowerPC64' For 64-bit PowerPC based
platforms (supports GCC
compiler).

'PowerPC64-Gnu'

'MinGW32' For Windows x86 based
32-bit platforms (supports
MinGW compiler).

'x86'

continues on next page
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Table 14.5 – continued from previous page
platform Description Portal Selection
'MinGW64' For Windows x86_64 based

64-bit platforms (supports
MinGW compiler).

'x86_64'

'dSPACE-MABII' For the dSPACE MicroAuto-
Box II real-time system (sup-
ports Microtec compiler).

'dSPACE-MABII-Microtec'

'dSPACE-MABIII' For the dSPACE MicroAuto-
Box III real-time system (sup-
ports Gcc compiler).

'dSPACE-MABIII-Gcc'

'dSPACE-MABXII' For the dSPACE MicroAuto-
Box II real-time system (sup-
ports Microtec compiler).

'dSPACE-MABII-Microtec'

'dSPACE-MABXIII' For the dSPACE MicroAuto-
Box III real-time system (sup-
ports Gcc compiler).

'dSPACE-MABIII-Gcc'

'Speedgoat-x86' For Speedgoat 32-bit real-
time platforms (supports Mi-
crosoft compiler).

'Speedgoat-x86'

'Speedgoat-x64' For Speedgoat 64-bit real-
time platforms (supports Mi-
crosoft compiler).

'Speedgoat-x64'

'IAtomE680_Bachmann' For Bachmann PLC plat-
forms (supports VxWorks
compiler).

'IAtomE680-VxWorks'

Note: If a solver for another platform is requested, FORCESPRO will still provide the simulation
interfaces for the 'Generic' host platform to enable users to run simulations.

Cross compilation

To generate code for other operating systems di�erent from the host platform, set the appro-
priate flag from the following list to 1:

codeoptions.win
codeoptions.mac
codeoptions.gnu

Note that this will only a�ect the target platform. Interfaces for the host platform will be
automatically built.

Mac compilation

When compiling for mac platforms it’s possible to select the compiler to be used for the
web compilation. Select from the available values gcc (default) and clang with the following
codeoption:

codeoptions.maccompiler
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SIMD instructions

On x86-based host platforms, one can enable the sse field to accelerate the execution of the
solver

codeoptions.sse = 1;

On x86-based host platforms, one can also add the avx field to significantly accelerate the
compilation and execution of the convex solver, from version 1.9.0,

codeoptions.avx = 1;

Note: Currently when options avx and blckMatrices are enabled simultaneously,
blckMatrices is automatically disabled.

Note: When sparse parameters are present in the model, the options avx and neon are
automatically set to zero.

Depending on the host platform, avx may be automatically enabled. If the machine on which
the solver is to be run does not support AVX and the message “Illegal Instruction” is returned
at run-time, one can explicitly disable avx by setting:

codeoptions.avx = -1;

If the host platform supports AVX, but the user prefers not to have AVX intrinsics in the gen-
erated code, one can also keep the default option value of the solver:

codeoptions.avx = 0;

On ‘NVIDIA-Cortex-A57’, ‘AARCH-Cortex-A57’ and ‘AARCH-Cortex-A72’ target platforms, one
can also enable the field neon in order to accelerate the execution of the convex solver. From
version 1.9.0, the typical behaviour is that the host platform gets vectorized code based on
AVX intrinsics when avx = 1, and the target platform gets AVX vectorized code if it supports
it when avx = 1 and NEON vectorized code if it is one of the above Cortex platforms and
neon = 1.
For single precision, the options are

codeoptions.floattype = 'float'
codeoptions.neon = 1;

For double precision, the options are

codeoptions.floattype = 'double'
codeoptions.neon = 2;

In case one wants to disable NEON intrinsics in the generated target code, the default value
of the neon option is

codeoptions.neon = 0;

If NEON vectorization is being used and there is a mismatch between float precision and the
value of the neon option, the solver is automatically generated with the following options:

codeoptions.floattype = 'double'
codeoptions.neon = 2;
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and a warning message is raised by the MATLAB client.

Note: From version 1.9.0, ARMv8-A NEON instructions are generated. Hence, target plat-
forms based on ARMv7 and previous versions are currently not supported.

14.1.15 Tips for solving QPs in single precision

Solving QPs in single precision can be rather challenging, ie non-converging solves are likely
to occur due to the lack of accuracy. In order to mitigate this undesirable behaviour, several
options can be tuned to make convergence more robust. They are shown and commented in
the code snippet below.

codeoptions.floattype = 'float';

codeoptions.regularize.epsilon = 1E-5; % Tolerance on pivot in factorization
codeoptions.regularize.delta = 5E-3; % On-the-fly regularization coefficient in
→˓factorization
codeoptions.regularize.epsilon2 = 1E-5; % Tolerance on pivot in factorization
codeoptions.regularize.delta2 = 5E-3; % On-the-fly regularization coefficient in
→˓factorization

codeoptions.accuracy.ineq = 1e-4; % infinity norm of residual for
→˓inequalities
codeoptions.accuracy.eq = 1e-4; % infinity norm of residual for equalities
codeoptions.accuracy.mu = 1e-6; % absolute duality gap
codeoptions.accuracy.rdgap = 1e-4; % relative duality gap := (pobj-dobj)/pobj

codeoptions.init = 1;

In general, the rationale behind this tuning is to make the tolerances looser and increase the
regularization in the linear algebra. Note that these tips are only applicable to QP solvers.
Solving NLPs in single precision is even more challenging and we currently do not o�er a set
of options to robustify convergence on this type of problems.

14.1.16 MISRA 2012 compliance

If your license allows it, add the following field to generate C code that is compliant with the
MISRA 2012 rules:

codeoptions.misra2012_check = 1;

This option makes the generated solver code MISRA compliant. After compilation, the client
also downloads a folder whose name terminates with _misra2012_analysis. The folder con-
tains one summary of all MISRA violations for the solver source and header files. Note that the
option only produces MISRA compliant code when used with algorithms PDIP and PDIP_NLP.

14.1.17 Optimizing code size

The size of the solver libraries generated with code option PDIP_NLP can be reduced by means
of the option nlp.compact_code. By setting

codeoptions.nlp.compact_code = 1;
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the user enables the FORCESPRO server to generate smaller code, which results in shorter
compilation time and slightly better solve time in some cases. This feature is especially e�ec-
tive on long horizon problems.
The size of sparse linear algebra routines in the generated code can be reduced by changing
the option compactSparse from 0 to 1:

codeoptions.compactSparse = 1;

14.1.18 Optimizing Linear Algebra Operations

Some linear algebra routines in the generated code have available optimizations that can be
enabled by changing the options optimize_<optimization> from 0 to 1. These optimiza-
tions change the code in order to make better use of some embedded architectures in which
hardware is more limited compared to host PC architectures. Therefore, these optimizations
show better results in embedded platforms such as ARM targets rather than during simula-
tions on host PCs. The available optimizations are:

• Cholesky Division: This option performs the divisions included in the Cholesky factor-
ization more e�ciently to reduce its computation time.

• Registers: This option attempts to use the architecture’s registers in order to reduce
memory operations which can take significant time.

• Use Locals: These options (which are separated into simple/heavy/all in ascending
complexity) make better use of data locality in order to reduce memory jumps

• Operations Rearrange: This option rearranges operations in order to make more e�cient
use of data and reduce memory jumps

• Loop Unrolling: This option unrolls some of the included loops in order to remove their
overhead.

• Enable O�set: This option allows the rest of the optimizations to take place in cases
where the matrix contains o�sets.

codeoptions.optimize_choleskydivision = 1;
codeoptions.optimize_registers = 1;
codeoptions.optimize_uselocalsall = 1;
codeoptions.optimize_uselocalsheavy = 1; % overriden if uselocalsall is enabled
codeoptions.optimize_uselocalssimple = 1; % overriden if uselocalsheavy is enabled
codeoptions.optimize_operationsrearrange = 1;
codeoptions.optimize_loopunrolling = 1;
codeoptions.optimize_enableoffset = 1;

14.1.19 Dump problem formulation

The MATLAB client of FORCESPRO provides a built-in tool to dump the problem formulation
to reproduce the exact same solver for future reference. This tool is explained in detail in
Section 15 and can be turned on by using the setting:

codeoptions.dump_formulation = 1;

14.2 High-level interface options

The FORCESPRO NLP solver of the high-level interface implements a nonlinear barrier interior-
point method. We will now discuss how to change several parameters in the solver.
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14.2.1 Integrators

When providing the continuous dynamics the user must select a particular integrator by set-
ting nlp.integrator.type as outlined in Table 14.6.

Table 14.6: Integrators options
nlp.integrator.type Type Order
'ForwardEuler' Explicit Euler Method 1
'ERK2' Explicit Runge-Kutta 2
'ERK3' Explicit Runge-Kutta 3
'ERK4' (default) Explicit Runge-Kutta 4
'BackwardEuler' Implicit Euler Method 1
'IRK2' Implicit Euler Method 2
'IRK4' Implicit Euler Method 4

The user must also provide the discretization interval (in seconds) and the number of inter-
mediate shooting nodes per interval. For instance:

codeoptions.nlp.integrator.type = 'ERK2';
codeoptions.nlp.integrator.Ts = 0.01;
codeoptions.nlp.integrator.nodes = 10;

Tip: Usually an explicit integrator such as RK4 should su�ce for most applications. If you have
sti� systems, or suspect inaccurate integration to be the cause of convergence failure of the
NLP solver, consider using implicit integrators from the table above.

Note: Note that the implicit integrators BackwardEuler, IRK2 and IRK4 currently rely on the
CasADi AD tool to work.

Expert options for implicit integrators

The implicit integrators BackwardEuler, IRK2 and IRK4 do not just evaluate the di�erential
equation, but actually solve a nonlinear equation to obtain the state trajectory. This is done
by means of Newton iterations, with default values of 10 iterations for BackwardEuler and 5
iterations for IRK2 and IRK4. These default values can be overwritten by using the following
option:

codeoptions.nlp.integrator.newtonIter = 3;

In order to reduce computational e�ort, the Jacobian of the nonlinear equation is only com-
puted once by default. If your di�erential equations are highly nonlinear, it may be worth the
e�ort to recompute it at every Newton iteration. This is achieved by means of the following
option:

codeoptions.nlp.integrator.reuseNewtonJacobian = false;

14.2.2 Accuracy requirements

One can modify the termination criteria by altering the KKT tolerance with respect to station-
arity, equality constraints, inequality constraints and complementarity conditions, respectively,
using the following fields:
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% default tolerances
codeoptions.nlp.TolStat = 1E-5; % inf norm tol. on stationarity
codeoptions.nlp.TolEq = 1E-6; % tol. on equality constraints
codeoptions.nlp.TolIneq = 1E-6; % tol. on inequality constraints
codeoptions.nlp.TolComp = 1E-6; % tol. on complementarity

All tolerances are computed using the infinitiy norm ‖·‖∞.

14.2.3 Barrier strategy

The strategy for updating the barrier parameter is set using the field:

codeoptions.nlp.BarrStrat = 'loqo';

It can be set to 'loqo' (default) or to 'monotone'. The default settings often leads to faster
convergence, while 'monotone' may help convergence for di�cult problems.

14.2.4 Hessian approximation

The way the Hessian of the Lagrangian function is computed can be set using the field:

codeoptions.nlp.hessian_approximation = 'bfgs';

FORCESPRO currently supports BFGS updates ('bfgs') (default) and Gauss-Newton approx-
imation ('gauss-newton'). Exact Hessians will be supported in a future version. Read the
subsequent sections for the corresponding Hessian approximation method of your choice.

BFGS options

When the Hessian is approximated using BFGS updates, the initialization of the estimates can
play a critical role in the convergence of the method. The default value is the identity matrix,
but the user can modify it using e.g.:

codeoptions.nlp.bfgs_init = diag([0.1, 10, 4]);

Note that BFGS updates are carried out individually per stage in the FORCES NLP solver, so the
size of this matrix is the size of the stage variable. Also note that this matrix must be positive
definite. When the cost function is positive definite, it often helps to initialize BFGS with the
Hessian of the cost function.
This matrix is also used to restart the BFGS estimates whenever the BFGS updates are skipped
several times in a row. The maximum number of updates skipped before the approximation
is re-initialized is set using:

codeoptions.nlp.max_update_skip = 2;

The default value for max_update_skip is 2.
In order to set the BFGS initialization through the bfgs_init codeoption one must first come
up with a guess for a good BFGS initialization. One way to do so is to first run the solver without
any user-defined BFGS initialization (i.e. not setting codeoptions.nlp.bfgs_init) and using
the BFGS matrix reached upon convergence as an inizialization. One can export the BFGS
matrix by setting

codeoptions.exportBFGS = 1;
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Istead of specifying the BFGS initialization at codegen one can also specify it at run-time. In
order to do this one should set

codeoptions.nlp.parametricBFGSinit = 1;

before generating the FORCES PRO solver. Having done this, the generated solver will expect
an input problem.BFGSinitLower<stage number> for every stage. This is a vector which
specifies the BFGS hessian initialization in LOWER TRIANGULAR ROW MAJOR format. Thus,
in order to specify e.g. the matrix ⎛⎝𝑎1 0 0

0 𝑎2 0
0 0 𝑎3

⎞⎠
for constants 𝑎1, 𝑎2, 𝑎3 > 0 as the BFGS inizialization at stage 6 out of 50 stages in total, one
would specify

problem.BFGSinitLower06 = [a_1, 0, a_2, 0, 0, a_3];

Gauss-Newton options

For problems that have a least squares objective, i.e. the cost function can be expressed by a
vector-valued function 𝑟𝑘 : R𝑛 → R𝑚 which implicitly defines the objective function as:

𝑓𝑘(𝑧𝑘, 𝑝𝑘) =
1

2
‖𝑟𝑘(𝑧𝑘, 𝑝𝑘)‖22 ,

the Gauss-Newton approximation of the Hessian is given by:

∇2
𝑥𝑥𝐿𝑘 ≈ ∇𝑟𝑘(𝑧𝑘, 𝑝𝑘)∇𝑟𝑘(𝑧𝑘, 𝑝𝑘)⊤

and can lead to faster convergence and a more reliable method. When this option is selected,
the functions 𝑟𝑘 have to be provided by the user in the field LSobjective. For example if
𝑟(𝑧) =

√
100𝑧21 +

√
6𝑧22 , i.e. 𝑓(𝑧) = 50𝑧21 + 3𝑧22 , then the following code defines the least-squares

objective (note that 𝑟 is a vector-valued function):

nlp.objective = @(z) 0.1* z(1)^2 + 0.01*z(2)^2;
nlp.LSobjective = @(z) [sqrt(0.2)*z(1); sqrt (0.02)*z(2)];

Important: The field LSobjective will have precedence over objective, which need not be
defined in this case.

When providing your own function evaluations in C, you must populate the Hessian argument
with a positive definite Hessian.

14.2.5 Line search settings

The line search first computes the maximum step that can be taken while maintaining the
iterates inside the feasible region (with respect to the inequality constraints). The maximum
distance is then scaled back using the following setting:

% default fraction-to-boundary scaling
codeoptions.nlp.ftbr_scaling = 0.9900;
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14.2.6 Regularization

To avoid ill-conditioned saddle point systems, FORCES employs two di�erent types of regu-
larization, static and dynamic regularization.

Static regularization

Static regularization of the augmented Hessian by 𝛿𝑤𝐼 , and of the multipliers corresponding
to the equality constraints by −𝛿𝑐𝐼 helps avoid problems with rank deficiency. The constants
𝛿𝑤 and 𝛿𝑐 vary at each iteration according to the following heuristic rule:

𝛿𝑤 = 𝜂𝑤 min(𝜇, ‖𝑐(𝑥)‖))𝛽𝑤 · (𝑖 + 1)−𝛾𝑤 + 𝛿𝑤,min

𝛿𝑐 = 𝜂𝑐 min(𝜇, ‖𝑐(𝑥)‖))𝛽𝑐 · (𝑖 + 1)−𝛾𝑐 + 𝛿𝑐,min

where 𝜇 is the barrier parameter and 𝑖 is the number of iterations.
This rule has been chosen to accommodate two goals: First, make the regularization depen-
dent on the progress of the algorithm - the closer we are to the optimum, the smaller the
regularization should be in order not to a�ect the search directions generated close to the
solution, promoting superlinear convergence properties. Second, the amount of regulariza-
tion employed should decrease with the number of iterations to a certain minimum level, at
a certain sublinear rate, in order to prevent stalling due to too large regularization. FORCES
NLP does not employ an inertia-correcting linear system solver, and so relies heavily on the
parameters of this regularization to be chosen carefully.
You can change these parameters by using the following settings:

% default static regularization parameters
codeoptions.nlp.reg_eta_dw = 1E-4;
codeoptions.nlp.reg_beta_dw = 0.8;
codeoptions.nlp.reg_min_dw = 1E-9;
codeoptions.nlp.reg_gamma_dw = 1.0/3.0;

codeoptions.nlp.reg_eta_dc = 1E-4;
codeoptions.nlp.reg_beta_dc = 0.8;
codeoptions.nlp.reg_min_dc = 1E-9;
codeoptions.nlp.reg_gamma_dc = 1.0/3.0;

Note that by choosing 𝛿𝑤 = 0 and 𝛿𝑐 = 0, you can turn o� the progress and iteration dependent
regularization, and rely on a completely static regularization by 𝛿𝑤,min and 𝛿𝑐,min, respectively.

Dynamic regularization

Dynamic regularization regularizes the matrix on-the-fly to avoid instabilities due to numerical
errors. During the factorization of the saddle point matrix, whenever it encounters a pivot
smaller than 𝜖, it is replaced by 𝛿. There are two parameter pairs: (𝜖, 𝛿) a�ects the augmented
Hessian and (𝜖2, 𝛿2) a�ects the search direction computation. You can set these parameters
by:

% default dynamic regularization parameters
codeoptions.regularize.epsilon = 1E-12; % (for Hessian approx.)
codeoptions.regularize.delta = 4E-6; % (for Hessian approx.)
codeoptions.regularize.epsilon2 = 1E-14; % (for Normal eqs.)
codeoptions.regularize.delta2 = 1E-14; % (for Normal eqs.)
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14.2.7 Linear system solver

The interior-point method solves a linear system to find a search direction at every iteration.
FORCES NLP o�ers the following three linear solvers:

• 'normal_eqs' (default): Solving the KKT system in normal equations form.
• 'symm_indefinite_fast': Solving the KKT system in augmented / symmetric indefinite

form, using regularization and positive definite Cholesky factorizations only.
• 'symm_indefinite': Solving the KKT system in augmented / symmetric indefinite form,

using block-indefinite factorizations.
The linear system solver can be selected by setting the following field:

codeoptions.nlp.linear_solver = 'symm_indefinite';

It is recommended to try di�erent linear solvers when experiencing convergence prob-
lems. The most stable method is 'symm_indefinite', while the fastest solver is
'symm_indefinite_fast'.

Note: Independent of the linear system solver choice, the generated code is always library-
free and statically allocated, i.e. it can be embedded anywhere.

The 'normal_eqs' solver is the standard FORCES linear system solver based on a full reduc-
tion of the KKT system (the so-called normal equations form). It works well for standard prob-
lems, especially convex problems or nonlinear problems where the BFGS or Gauss-Newton
approximations of the Hessian are numerically su�ciently well conditioned.
The 'symm_indefinite' solver is the most robust solver, but still high-speed. It is based on
block-wise factorization of the symmetric indefinite form of the KKT system (the so-called aug-
mented form). Each block is handled by symmetric indefinite LDL factorization, with (mod-
ified) on-the-fly Bunch-Kaufmann permutations leading to boundedness of lower triangular
factors for highest numerical stability. This is our most robust linear system solver, with only a
modest performance penalty (about 30% compared to 'symm_indefinite_fast').
The 'symm_indefinite_fast' solver is robust, but even faster. It is based on block-wise fac-
torization of the symmetric indefinite KKT matrix, where each block is handled by a Cholesky
factorization. It uses regularization to increase numerical stability. Currently only used for
receding-horizon/MPC-like problems where dimensions of all stages are equal (minus the
first and last stage, those are handled separately). It is more robust and faster than the normal
equations form. This solver is likely to become the default option in the future.

14.2.8 Automatic di�erentiation tool

If external functions and derivatives are not provided directly as C code by the user, FORCE-
SPRO makes use of an automatic di�erentiation (AD) tool to generate e�cient C code for
all the functions (and their derivatives) inside the problem formulation. Currently, three dif-
ferent AD tools are supported that can be chosen by means of the setting nlp.ad_tool as
summarized in Table 14.7.

Table 14.7: Automatic di�erentiation tool options
nlp.ad_tool Tool URL
'casadi' CasADi v2.4.2 CasADi
'casadi-351' CasADi v3.5.1 CasADi
'symbolic-math-tbx' MathWorks Symbolic Math Toolbox MathWorks
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Note that MathWorks Symbolic Math Toolbox requires an additional license, which is why the
default option is set to

codeoptions.nlp.ad_tool = 'casadi';

Also note that the use of implicit integrators BackwardEuler, IRK2 and IRK4 (see Section
14.2.1) currently still rely on using the CasADi AD tool.

14.2.9 Safety checks

By default, the output of the function evaluations is checked for the presence of NaNs or INFs
in order to diagnose potential initialization problems. In order to speed up the solver one can
remove these checks by setting:

codeoptions.nlp.checkFunctions = 0;

14.3 Convex branch-and-bound options

The settings of the FORCESPRO mixed-integer branch-and-bound convex solver are accessed
through the codeoptions.mip struct. It is worthwhile to explore di�erent values for the set-
tings in Table 14.8, as they might have a severe impact on the performance of the branch-and-
bound procedure.

Note: All the options described below are currently not available with the FORCESPRO non-
linear solver. For mixed-integer nonlinear programs and the available options, please have a
look at paragraph Mixed-integer nonlinear solver.

Table 14.8: Branch-and-bound options
Setting Values Default
mip.timeout Any value ≥ 0 31536000 (1 year)
mip.mipgap Any value ≥ 0 0
mip.branchon 'mostAmbiguous', 'leastAmbiguous' 'mostAmbiguous'
mip.stageinorder 0 (OFF), 1 (ON) 1 (ON)
mip.explore 'bestFirst', 'depthFirst' 'bestFirst'
mip.inttol Any value > 0 1E-5
mip.queuesize Any integer value ≥ 0 1000

A description of each setting is given below:
• mip.timeout: Timeout in seconds, after which the search is stopped and the best solu-

tion found so far is returned.
• mip.mipgap: Relative sub-optimality after which the search shall be terminated. For

example, a value of 0.01 will search for a feasible solution that is at most 1%-suboptimal.
Set to zero if the optimal solution is required.

• mip.branchon: Determines which variable to branch on after having solved the re-
laxed problem. Options are 'mostAmbiguous' (i.e. the variable closest to 0.5) or
'leastAmbiguous' (i.e. the variable closest to 0 or 1).

• mip.stageinorder: Stage-in-order heuristic: For the branching, determines whether to
fix variables in order of the stage number, i.e. first all variables of stage 𝑖 will be fixed before
fixing any of the variables of stage 𝑖+1. This is often helpful in multistage problems, where
a timeout is expected to occur, and where it is important to fix the early stages first (for
example MPC problems). Options are 0 for OFF and 1 for ON.
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• mip.explore: Determines the exploration strategy when selecting pending nodes. Op-
tions are 'bestFirst', which chooses the node with the lowest lower bound from all
pending nodes, or 'depthFirst', which prioritizes nodes with the most number of fixed
binaries first to quickly reach a node.

• mip.inttol: Integer tolerance for identifying binary solutions of relaxed problems. A
solution of a relaxed problem with variable values that are below inttol away from
binary will be declared to be binary.

• mip.queuesize: Maximum number of pending nodes that the branch and bound solver
can store. If that number is exceeded during the search, the solver quits with an exitflag
value of -2 and returns the best solution found so far.

14.4 Solve methods

As a default optimization method the primal-dual interior-point method is used. Several other
methods are available. To change the solve method set the solvemethod field as outlined in
Table 14.9.

Table 14.9: Solve methods
solvemethod Method Description
'PDIP' (default) Primal-Dual Interior-Point Method The Primal-Dual

Interior-Point Method
is a stable and ro-
bust method for most
problems.

'ADMM' Alternating Direction Methods of Multipliers For some problems,
ADMM may be faster.
The method variant
and several algorithm
parameters can be
tuned in order to
improve performance.

'DFG' Dual Fast Gradient Method For some problems
with simple con-
straints, our imple-
mentation of the dual
fast gradient method
can be the fastest
option. No parameters
need to be tuned in
this method.

'FG' Fast Gradient Method For problems with no
equality constraints
(only one stage) and
simple constraints,
the primal fast gra-
dient method can
give medium accuracy
solutions extremely
quickly. The method
has several tuning
parameters that can
significantly a�ect the
performance.
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14.4.1 Primal-Dual Interior-Point Method

The Primal-Dual Interior-Point Method is the default optimization method. It is a stable and
robust method for most of the problems.

Solver Initialization

The performance of the solver can be influenced by the way the variables are initialized. The
default method (cold start) should work in most cases extremely reliably, so there should be no
need in general to try other methods, unless you are experiencing problems with the default
initialization scheme. To change the method of initialization in FORCESPRO set the field init
to one of the values in Table 14.10.

Table 14.10: PDIP solver initialization
init Method Initialization method
0 (default) Cold start Set all primal variables to 0, and all dual variables to the

square root of the initial complementarity gap 𝜇0 : 𝑧𝑖 =
0, 𝑠𝑖 =

√
𝜇0, 𝜆𝑖 =

√
𝜇0. The default value is 𝜇0 = 106.

1 Centered start Set all primal variables to zero, the slacks to the RHS of
the corresponding inequality, and the Lagrange multipli-
ers associated with the inequalities such that the pair-
wise product between slacks and multipliers is equal to
the parameter 𝜇0 : 𝑧𝑖 = 0, 𝑠𝑖 = 𝑏ineq and 𝑠𝑖𝜆𝑖 = 𝜇0.

2 Primal warm start Set all primal variables as provided by the user. Calculate
the residuals and set the slacks to the residuals if they are
su�ciently positive (larger than 10−4), or to one otherwise.
Compute the associated Lagrange multipliers such that
𝑠𝑖𝜆𝑖 = 𝜇0.

Initial Complementary Slackness

The default value for 𝜇0 is 106. To use a di�erent value, use:

codeoptions.mu0 = 10;

Accuracy Requirements

The accuracy for which FORCESPRO returns the OPTIMAL flag can be set as follows:

codeoptions.accuracy.ineq = 1e-6; % infinity norm of residual for inequalities
codeoptions.accuracy.eq = 1e-6; % infinity norm of residual for equalities
codeoptions.accuracy.mu = 1e-6; % absolute duality gap
codeoptions.accuracy.rdgap = 1e-4; % relative duality gap := (pobj-dobj)/pobj

Line Search Settings

If FORCESPRO experiences convergence di�culties, you can try selecting di�erent line
search parameters. The first two parameters of codeoptions.linesearch, factor_aff and
factor_cc are the backtracking factors for the line search (if the current step length is in-
feasible, then it is reduced by multiplication with these factors) for the a�ne and combined
search direction, respectively.
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codeoptions.linesearch.factor_aff = 0.9;
codeoptions.linesearch.factor_cc = 0.95;

The remaining two parameters of the field linesearch determine the minimum (minstep)
and maximum step size (maxstep). Choosing minstep too high will cause the generated
solver to quit with an exitcode saying that the line search has failed, i.e. no progress could be
made along the computed search direction. Choosing maxstep too close to 1 is likely to cause
numerical issues, but choosing it too conservatively (too low) is likely to increase the number
of iterations needed to solve a problem.

codeoptions.linesearch.minstep = 1e-8;
codeoptions.linesearch.maxstep = 0.995;

Regularization

During factorization of supposedly positive definite matrices, FORCESPRO applies a regular-
ization to the 𝑖-th pivot element if it is smaller than 𝜖. In this case, it is set to 𝛿, which is the
lower bound on the pivot element that FORCESPRO allows to occur.

codeoptions.regularize.epsilon = 1e-13; % if pivot element < epsilon ...
codeoptions.regularize.delta = 1e-8; % then set it to delta

Multicore parallelization

FORCESPRO supports the computation on multiple cores, which is particularly useful for large
problems and long horizons (the workload is split along the horizon to multiple cores). This is
implemented by the use of OpenMP and can be switched on by using

codeoptions.parallel = 1;

By default multicore computation is switched o�.

14.4.2 Alternating Directions Method of Multipliers

FORCESPRO implements several optimization methods based on the ADMM framework. Dif-
ferent variants can handle di�erent types of constraints and FORCESPRO will automatically
choose an ADMM variant that can handle the constraints in a given problem. To manually
choose a specific method in FORCESPRO, use the ADMMvariant field of codeoptions:

codeoptions.ADMMvariant = 1; % can be 1 or 2

where variant 1 is as follows:

minimize 1

2
𝑦⊤𝐻𝑦 + 𝑓⊤𝑦

subject to 𝐷𝑦 = 𝑐

𝑧 ≤ 𝑧 ≤ 𝑧

𝑦 = 𝑧

and variant 2 is as follows:

minimize 1

2
𝑦⊤𝐻𝑦 + 𝑓⊤𝑦

subject to 𝐷𝑦 = 𝑐

𝐴𝑦 = 𝑧

𝑧 ≤ 𝑏
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Accuracy requirements

The accuracy for which FORCESPRO returns the OPTIMAL flag can be set as follows:

codeoptions.accuracy.consensus = 1e-3; % infinity norm of the consensus equality
codeoptions.accuracy.dres = 1e-3; % infinity norm of the dual residual

Note that, in contrast to primal-dual interior-point methods, the required number of ADMM
iterations varies very significantly depending on the requested accuracy. ADMM typically re-
quires few iterations to compute medium accuracy solutions, but many more iterations to
achive the same accuracy as interior-point methods. For feedback applications, medium ac-
curacy solutions are typically su�cient. Also note that the ADMM accuracy requirements have
to be changed depending on the problem scaling.

Method parameters

ADMM uses a regularization parameter 𝜌, which also acts as the step size in the gradient step.
The convergence speed of ADMM is highly variable in the parameter 𝜌. Its value should satisfy
𝜌 > 0. This parameter can be tuned using the following command:

codeoptions.ADMMrho = 1;

In some cases it may be possible to let FORCESPRO choose the value 𝜌 automatically. To
enable this feature set:

codeoptions.ADMMautorho = 1;

Please note that this does not guarantee that the choice of 𝜌 will be optimal.
ADMM can also include an ‘over-relaxation’ step that can improve the convergence speed. This
step is typically useful for problems where ADMM exhibits very slow convergence and can be
tuned using the parameter 𝛼. Its value should satisfy 1 ≤ 𝛼 ≤ 2. This step using the following
command:

codeoptions.ADMMalpha = 1;

Precomputations

For problems with time-invariant data, FORCESPRO can compute full matrix inverses at code
generation time and then implement matrix solves online by dense matrix-vector multipli-
cation. In some cases, especially when the prediction horizon is long, it may be better to
factorize the matrix and implement matrix solves using forward and backward solves with
the pre-computed factors. To manually switch on this option, use the ADMMfactorize field of
codeoptions.
When the data is time-varying, or when the prediction horizon is larger than 15 steps, FORCE-
SPRO automatically switches to a factorization-based method.

codeoptions.ADMMfactorize = 0;

14.4.3 Dual Fast Gradient Method

For some problems with simple constraints, our implementation of the dual fast gradient
method can be the fastest option. No parameters need to be tuned in this method.
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14.4.4 Primal Fast Gradient Method

For problems with no equality constraints (only one stage) and simple constraints, the primal
fast gradient method can give medium accuracy solutions extremely quickly. The method has
several tuning parameters that can significantly a�ect the performance.

Accuracy requirements

The accuracy for which FORCESPRO returns the OPTIMAL flag can be set as follows:

codeoptions.accuracy.gmap= 1e-5; % infinity norm of the gradient map

The gradient map is related to the di�erence with respect to the optimal objective value. Just
like with other first-order methods, the required number of FG iterations varies very signif-
icantly depending on the requested accuracy. Medium accuracy solutions can typically be
computed very quickly, but many iterations are needed to achieve the same accuracy as with
interior-point methods.

Method parameters

The user has to determine the step size in the fast gradient method. The convergence speed
of FG is highly variable in this parameter, which should typically be set to be one over the
maximum eigenvalue of the quadratic cost function. This parameter can be tuned using the
following command:

codeoptions.FGstep = 1/1000;

In some cases it may be possible to let FORCESPRO choose the step size automatically. To
enable this feature set:

codeoptions.FGautostep = 1;

Warm starting

The performance of the fast gradient method can be greatly influenced by the way the vari-
ables are initialized. Unlike with interior-point methods, fast gradient methods can be very
e�ciently warm started with a good guess for the optimal solution. To enable this feature set:

codeoptions.warmstart = 1;

When the user turns warm start on, a new parameter z_init_0 is automatically added. The
user should set it to be a good guess for the solution, which is typically available when solving
a sequence of problems.
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Chapter 15

Dumping Problem Formulation
and Data

15.1 Why to use the dump tool?

Along with its MATLAB client, FORCESPRO provides a tool that allows the user to dump the
formulation and actual data of an optimization problem. This information allows to exactly
reproduce the same solver for a given formulation and to feed it with exactly the same data to
yield exactly the same results (provided it is run on the very same target hardware). Problem
formulation and data stored in “stand-alone” mat files, i.e. there is no need to keep copies of
other files that may be used to specify the formulation (such as the dynamic equations).
The dump tool may be helpful for a couple of use cases such as:

• Debugging: a dumped problem allows you to re-run single solver calls without the need
to have your full simulation environment up and running.

• External support: you may send a dumped problem to whomever is in charge of provid-
ing support and it will enable that person to exactly reproduce your issue.

• Testing: keeping dumps of problems that performed as expected can be used to run
regression tests to ensure they work as expected after future changes.

Note that the dump tool does not merely save your MATLAB structs into a file. Those structs
may contain MATLAB function handles referencing external functions. Instead, the dumped
formulation already contains C code generated by the automatic differentiation tool. Thus,
keep the following in mind:

Important: A dumped problem will contain complete information about the solver that
you have setup. In particular, it may be used to reverse-engineer your problem formulation
(including dynamic model, objective function, constraints etc.). Thus, only share a dumped
problem with persons that have a right to obtain this information.

15.2 How to use the dump tool?

Dumping a problem consist of two steps:
1. Dumping the problem formulation: once a new solver has been generated, a
formulation struct, the codeoptions struct and optionally the outputs struct need
to be stored.
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2. Dumping problem data: for each problem instance, the problem params struct needs to
be stored. It is possible to store data of multiple problem instances for the same problem
formulation.

15.2.1 Dumping the problem formulation

For dumping the problem formulation, the following three steps need to be taken:
1. Enabling creation of a formulation dump: This is done by using the option

codeoptions.dump_formulation = 1;

2. Obtaining the dumped formulation: Calling FORCES_NLP with the before-mentioned
code option enabled will make it return a formulation struct as third output argument

[stages, codeoptions, formulation] = FORCES_NLP( model, codeoptions, outputs );

3. Storing the necessary structs into a file: After calling FORCES_NLP, you should use the
following function to store both the formulation and codeoptions struct

tag = ForcesDumpFormulation( formulation,codeoptions,outputs );

The third argument outputs is optional. The function ForcesDumpFormulation will create a
mat file in the directory from where it is called containing the passed information. The filename
is automatically chosen and will contain the name of your solver, a unique tag, a timestamp
as well as the su�x _F, e.g. myFORCESsolver_ABC3DEFGHIJ_20200101120000000_F.mat.
Note that this function returns a tag that is unique for a given formulation and code options.
It is strongly recommended to use it when also dumping corresponding problem data.

15.2.2 Dumping problem data

Assuming your generated FORCESPRO solver is called myFORCESsolver and you are calling it
with the following command

[output, exitflag, info] = myFORCESsolver( problem );

then dumping the problem data of any problem instance is as simple as calling

ForcesDumpProblem( problem,tag );

Here, you need to provide both the problem parameter struct as well as the unique
tag that has been generated when dumping the problem formulation. The function
ForcesDumpProblem will create a mat file in the directory from where it is called con-
taining the passed information. The filename is automatically chosen and will con-
tain the name of your solver, a unique tag, a timestamp as well as the su�x _P, e.g.
myFORCESsolver_ABC3DEFGHIJ_20200101120001000_P.mat.
You may dump as many problem instances as you have disk space available.

15.2.3 Running a dumped problem

After you have dumped a problem formulation and at least one set of problem
data, you can use those mat files to exactly reproduce your solver and problem in-
stances. To do so, you need to perform the following two steps (where we assume you
have stored the two files myFORCESsolver_ABC3DEFGHIJ_20200101120000000_F.mat and
myFORCESsolver_ABC3DEFGHIJ_20200101120001000_P.mat at a location in your MATLAB
path):
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1. Re-generate the FORCESPRO solver by loading the formulation mat file and using its
content to call the code generation:

F = load('myFORCESsolver_ABC3DEFGHIJ_20200101120000000_F.mat');
FORCES_NLP( F.formulation,F.codeoptions,F.outputs );

This will re-create the solver MEX function myFORCESsolver. Note that the third input
struct containing the outputs is only available if you included it into your dump.

2. Running the solver with dumped problem data by loading the data mat file and using
its content to call the generated solver:

P = load('myFORCESsolver_ABC3DEFGHIJ_20200101120001000_P.mat');
myFORCESsolver( P.problem );

You may repeat this step for as many problem instances as you have dumped.

15.3 Limitations

Currently, the dump tool has the following limitations:
• It is only provided for the MATLAB client of FORCESPRO.
• It cannot be used if you pass external functions in form of C code.

We aim at overcoming these limitations in a future release.
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Chapter 16

Frequently asked questions

16.1 Quick links

Features of FORCESPRO

Issues during code generation

Issues when running the solver

Simulink interface

Code deployment

Other topics

16.2 Features of FORCESPRO

• I have been using FORCES in the past. Why should I use FORCESPRO?
The development of the free version of FORCES by ETH (forces.ethz.ch) has been discontinued,
and the code generation service is no longer available.
The professional version of FORCESPRO comes with professional support, additional interfaces,
and a large performance increase.

• Can FORCESPRO target dSpace hardware?
Yes, FORCESPRO can be seamlessly integrated in the dSpace design flow with the new
Simulink interface. For more details see dSPACE MicroAutoBox II and dSPACE MicroAuto-
Box III.

• Can I use FORCES for non-multistage programs?
Yes, FORCESPRO supports the case 𝑁 = 1, i.e. a general QCQP of the form

minimize 1

2
𝑧⊤𝐻𝑧 + 𝑓⊤𝑧

subject to 𝐷𝑧 = 𝑐

𝑧 ≤ 𝑧 ≤ 𝑧

𝐴𝑧 ≤ 𝑏

𝑧⊤𝑄𝑧 + 𝑞⊤𝑧 ≤ 𝑟

In order to use this feature, simply call stages=MultistageProblem(1) and fill in the matrices as
described in Low-level interface.
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• I need to re-linearize the model of my plant each sampling time. Does FORCESPRO
support this?

When re-linearizing non-linear dynamics, you obtain in each sampling time a di�erent matrix
𝐴, 𝐵 and also a new a�ne part 𝑔:

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑔

FORCESPRO supports changing these variables at run-time by defining them as parameters.
• I don’t have a state-space model of my system. Can I still use FORCESPRO to design

an optimal controller?
Yes, the graphical interface allows one to design optimal controllers for models described by a
Simulink diagram - there is no need for equations. If you have a model in another form, please
send us a feature request and we will try to support your model type as soon as possible.

16.3 Issues during code generation

• I get the following error message when generating code: Error downloading URL.
Your network connection may be down or your proxy settings improperly config-
ured.

Your current MATLAB configuration is not accepting our website’s SSL certificate. Please follow
this link to add our certificate to Matlab’s list of certificates manually. You can download the
embotech certificate using your browser.

• I get the following error message when generating code: Invalid MEX-file. The spec-
ified module could not be found.

Please install the Visual Studio redistributable libraries from here.
• I get the following error when generating code: java.io.IOException: Server is not

responding, it might not support the current protocol. Missing ServerHello.
Some MATLAB versions and some Java installations give problems when communicating us-
ing HTTPS from MATLAB. Please edit the file callSoapService.m. Search for the line

url = URL(endpoint);

and replace it with

url = URL([], endpoint, sun.net.www.protocol.https.Handler)

• I get the following error when generating code: java.io.IOException: The issuer can
not be found in the trusted CA list.

Some MATLAB versions and some Java installations give problems when communicating us-
ing HTTPS from MATLAB. Please edit the file callSoapService.m. Search for the line

url = URL(endpoint);

and replace it with

url = URL([], endpoint, sun.net.www.protocol.https.Handler)

• I get the following error when generating code: javax.net.ssl.SSLException: Unrec-
ognized SSL message, plaintext connection?

If you are using the enterprise version of FORCESPRO (separate server in your company net-
work), had previously altered the file callSoapService.m to accept secure HTTP connections
and the enterprise server is listening on an HTTP port, you receive this error. To fix: Please edit
the file callSoapService.m. Search for the line
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url = URL([], endpoint, sun.net.www.protocol.https.Handler)

and replace it by the default

url = URL(endpoint);

• I get the following error when generating code:
Server was unable to process request. ---> There is no parameter that maps to c of
→˓stage 1

However, according to the multistage formulation, my 𝐷1 is empty in my problem, so 𝑐1 should
also be empty.**
We recommend to reformulate the optimization variables for each stage so that 𝐷1 is not
empty for performance reasons.
If this is not possible and 𝐷1 must remain empty, then the inter-stage equality constraint
equations become

𝐶𝑖−1𝑧𝑖−1 + 𝐷𝑖𝑧𝑖 = 𝑐𝑖−1

instead of

𝐶𝑖−1𝑧𝑖−1 + 𝐷𝑖𝑧𝑖 = 𝑐𝑖

• I get the following error message when using the MATLAB interface: ’Unable to cast
object of type ‘csmatio.types.MLDouble’ to type ‘csmatio.types.MLStructure’.’

Please check that you have your MEX compiler correctly set up. If the problem persists please
send your MATLAB and platform settings to support@embotech.com.

• I get the following error message when using the Python interface: csma-
tio.io.MatlabIOException: Incorrect Matlab array class: int32

Make sure that the parametric data is passed to the solver as numpy arrays of floating point
numbers, i.e. instead of

problem['Q'] = np.array([1 1])

use

problem['Q'] = np.array([1.0 1.0])

• The code generation process gets stuck displaying Generating and compiling code. . .
and sometimes it returns an error after 10 minutes.

By default, the code is compiled will all optimizations turned on (-O3). When the size of your
code is large, typically when you have a long prediction horizon, it can take a very long time
to compile the code with all optimizations turned on. If this process takes too long the server
times out and returns a compilation error. You can reduce the compilation time by changing
the compiler optimization flags to -O0, -O1, or -O2. You can change this setting using the
following flag set to the appropriate value.

codeoptions.optlevel = 2;

16.4 Issues when running the solver

• When I run the solver in MATLAB I get the following error: ??? Error using ==> Test-
Solver freopen of stdout did not work.
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This is a printing error that occurs in some old versions of MATLAB because stdout is not
defined inside MEX files. Supported versions of MATLAB should not produce this error. You
can avoid this error by setting

codeoptions.printlevel = 0;

• My solver is producing a segmentation fault.
When the solver has a large amount of parameters or the problem is relatively large, compiling
with codeoptions.optlevel = 0; can produce a segmentation fault. Please try to increase the
value of codeoptions.optlevel or submit a bug report to support@embotech.com.

• ADMM does not converge for my problem.
Unlike interior-point methods, the convergence of ADMM depends on the problem scaling.
If the matrices for the problem data have very high condition numbers and norms, ADMM
can converge extremely slowly regardless of the algorithm parameters. In some cases, ADMM
might not converge at all due to severe accumulation of numerical errors.
However, often the problem is choosing the right ADMM parameters 𝜌 and 𝛼 to obtain fast
convergence of the algorithm.

• The solver outputs exitcode -7.
Exitcode -7 means that the solver could not proceed. A common cause is the problem being
infeasible. FORCESPRO does not have infeasibility detection to speed up the solution time.
However, one can use the function stages2qcqp to convert the FORCES problem into a stan-
dard (QC)QP that can be given to standard QP solvers like quadprog, MOSEK or CPLEX to
check for infeasibility.

• I am generating code from 32-bit MATLAB. When I run the code it produces a seg-
fault. What is the problem?

By default, the code is compiled will all optimizations turned on (-O3). We have observed that
sometimes there are problems when linking on 32-bit versions of MATLAB. This problem does
not occur when the compiler optimization flags are set to -O0, -O1, or -O2. You can change
this setting using the following flag set to the appropriate value.

codeoptions.optlevel = 2;

16.5 Simulink interface

• When I have a long prediction horizon I have too many input and output ports that
I need to wire up in my Simulink interface. When I change my prediction horizon I
need to re-wire them all again and this is a pain.

The new version of FORCESPRO provides a ‘compact’ version of all Simulink interfaces that
can be called with stacked parameters and has a small and constant number of input ports
independent of the prediction horizon.
To check the dimensions of the new stacked parameters click on the ‘Help’ button in the
dialogue of the ‘compact’ Simulink block.

16.6 Code deployment

• I get the following error message when deploying a solver on dSpace hardware:
OPUS MAKE: Don’t know how to make . . .
This is well-known deployment issue with compiled files. During building for target the
compiler is looking for the source code of the solver. The resulting object file is added in
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the folder <solvername>_<target_ext> which is automatically generated by the com-
piler. Therefore, to use the object file you need to move it to that folder in order for the
compiler to detect it and skip compilation. A possible workaround is to use the static
library of the solver as specified in dSPACE MicroAutoBox II.

16.7 Other topics

• How can I obtain information about the KKT conditions at the solution?
The printlevel solver option allows the user to control how much information is printed
by the solver. See here for more information on how to define solver options.
When printlevel is set to 2 the solver outputs information related to the KKT conditions
at every iteration. In particular:

– res_eq is the maximum ||𝐶𝑖−1𝑧𝑖−1 + 𝐷𝑖𝑧𝑖 − 𝑐𝑖||∞ for all 𝑖,
– If we rewrite all inequality constraints as 𝐺𝑧 ≤ 𝑔 and 𝑠 are slack variables for the same

constraints, res_ineq is equal to ||𝐺𝑧 − 𝑔 + 𝑠||∞,
– If 𝜆 are the Lagrange multipliers for the inequality constraints, 𝜇 is equal to 𝜆⊤𝑠 di-

vided by the number of constraints, i.e. the average complementary slackness.
• What system information am I sharing by using FORCESPRO?

When contacting the solver generation server, the FORCESPRO client sends the following
system information:

– Machine username
– MAC address
– Fingerprints

The fingerprint is platform dependent. We create two fingerprints using di�erent system
information to create hashes and validate with either of them in order to have a more
stable validation:

– For Windows, each fingerprint uses a subset of the below information:

* Mac addresses

* CPU ID (register with machine support)

* Volume Serial Number

* Volume GUID
– For MacOS, each fingerprint uses a subset of the below information:

* Cputype and Cpusubtype

* Network node hostname

* Mac addresses
– For Linux, each fingerprint uses a subset of the below information:

* Network node hostname

* /etc/machine-id

* Mac addresses

* Linux user uid
The above information is hashed to create the fingerprint which means that it cannot be
recovered by using the fingerprint.
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• Why am I being asked to update the FORCESPRO client software every now and
then?
We have a development policy of continuous deployment, which unfortunately means
that we have to ask users to update their clients every time there is a substantial change in
the code. To make this process easier and faster, FORCESPRO comes with a functionality
that allows users to update their clients by simply typing the following in the MATLAB
command prompt:

>> updateClient
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